Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels. (49/460)

The scorpion toxin, Charybdotoxin (CTX), blocks homotetrameric, voltage-gated K(+) channels by binding near the outer entrance to the pore in one of four indistinguishable orientations. We have determined the pH-dependence of CTX block of a tetrameric Shaker potassium channel with a single copy of a histidine replacing the wild-type phenylalanine at position 425. We compared this pH-dependence with that from homotetrameric channels with four copies of the mutation. We found that protonation of a single amino acid at position 425 had a large effect on the affinity of the channel for CTX-much larger than expected if only one of the four CTX binding orientations was disrupted. The pK(a) for the H(+)-ion induced protection from CTX block indicates that the electrostatic environment near position 425 is likely basic in nature, perhaps because of the proximity of lysine 427. We also examined the pH-dependence of block of channels with one and four copies of the histidine mutation by CTX containing neutralizing mutations of four basic residues on the active face of the toxin. The results suggested an orientation of CTX on the channel that places three of the positively charged CTX residues very near three of the four Shaker 425 positions.  (+info)

NO(+) but not NO radical relaxes airway smooth muscle via cGMP-independent release of internal Ca(2+). (50/460)

We compared the effects of two redox forms of nitric oxide, NO(+) [liberated by S-nitroso-N-acetyl-penicillamine (SNAP)] and NO. [liberated by 3-morpholinosydnonimine (SIN-1) in the presence of superoxide dismutase], on cytosolic concentration of Ca(2+) ([Ca(2+)](i); single cells) and tone (intact strips) obtained from human main stem bronchi and canine trachealis. SNAP evoked a rise in [Ca(2+)](i) that was unaffected by removing external Ca(2+) but was markedly reduced by depleting the internal Ca(2+) pool using cyclopiazonic acid (10(-5) M). Dithiothreitol (1 mM) also antagonized the Ca(2+) transient as well as the accompanying relaxation. SNAP attenuated responses to 15 and 30 mM KCl but not those to 60 mM KCl, suggesting the involvement of an electromechanical coupling mechanism rather than a direct effect on the contractile apparatus or on Ca(2+) channels. SNAP relaxations were sensitive to charybdotoxin (10(-7) M) or tetraethylammonium (30 mM) but not to 4-aminopyridine (1 mM). Neither SIN-1 nor 8-bromoguanosine 3',5'-cyclic monophosphate had any significant effect on resting [Ca(2+)](i), although both of these agents were able to completely reverse tone evoked by carbachol (10(-7) M). We conclude that NO(+) causes release of internal Ca(2+) in a cGMP-independent fashion, leading to activation of Ca(2+)-dependent K(+) channels and relaxation, whereas NO. relaxes the airways through a cGMP-dependent, Ca(2+)-independent pathway.  (+info)

O2-sensitive K+ channels: role of the Kv1.2 -subunit in mediating the hypoxic response. (51/460)

One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 alpha-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 alpha-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at approximately 80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 alpha-subunit is important in conferring O2 sensitivity to this channel.  (+info)

A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. (52/460)

Large conductance voltage and Ca(2+)-activated K(+) (MaxiK) channels couple intracellular Ca(2+) with cellular excitability. They are composed of a pore-forming alpha subunit and modulatory beta subunits. The pore blockers charybdotoxin (CTx) and iberiotoxin (IbTx), at nanomolar concentrations, have been invaluable in unraveling MaxiK channel physiological role in vertebrates. However in mammalian brain, CTx-insensitive MaxiK channels have been described [Reinhart, P. H., Chung, S. & Levitan, I. B. (1989) Neuron 2, 1031-1041], but their molecular basis is unknown. Here we report a human MaxiK channel beta-subunit (beta4), highly expressed in brain, which renders the MaxiK channel alpha-subunit resistant to nanomolar concentrations of CTx and IbTx. The resistance of MaxiK channel to toxin block, a phenotype conferred by the beta4 extracellular loop, results from a dramatic ( approximately 1,000 fold) slowdown of the toxin association. However once bound, the toxin block is apparently irreversible. Thus, unusually high toxin concentrations and long exposure times are necessary to determine the role of "CTx/IbTx-insensitive" MaxiK channels formed by alpha + beta4 subunits.  (+info)

A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. (53/460)

The pore-forming alpha subunits of many ion channels are associated with auxiliary subunits that influence channel expression, targeting, and function. Several different auxiliary (beta) subunits for large conductance calcium-dependent potassium channels of the Slowpoke family have been reported, but none of these beta subunits is expressed extensively in the nervous system. We describe here the cloning and functional characterization of a novel Slowpoke beta4 auxiliary subunit in human and mouse, which exhibits only limited sequence homology with other beta subunits. This beta4 subunit coimmunoprecipitates with human and mouse Slowpoke. beta4 is expressed highly in human and monkey brain in a pattern that overlaps strikingly with Slowpoke alpha subunit, but in contrast to other Slowpoke beta subunits, it is expressed little (if at all) outside the nervous system. Also in contrast to other beta subunits, beta4 downregulates Slowpoke channel activity by shifting its activation range to more depolarized voltages and slowing its activation kinetics. beta4 may be important for the critical roles played by Slowpoke channels in the regulation of neuronal excitability and neurotransmitter release.  (+info)

Ca(2+) channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. (54/460)

The advantages of using isolated cells have led us to develop short-term cultures of hippocampal pyramidal cells, which retain many of the properties of cells in acute preparations and in particular the ability to generate afterhyperpolarizations after a train of action potentials. Using perforated-patch recordings, both medium and slow afterhyperpolarization currents (mI(AHP) and sI(AHP), respectively) could be obtained from pyramidal cells that were cultured for 8-15 days. The sI(AHP) demonstrated the kinetics and pharmacologic characteristics reported for pyramidal cells in slices. In addition to confirming the insensitivity to 100 nM apamin and 1 mM TEA, we have shown that the sI(AHP) is also insensitive to 100 nM charybdotoxin but is inhibited by 100 microM D-tubocurarine. Concentrations of nifedipine (10 microM) and nimodipine (3 microM) that maximally inhibit L-type calcium channels reduced the sI(AHP) by 30 and 50%, respectively. However, higher concentrations of nimodipine (10 microM) abolished the sI(AHP), which can be partially explained by an effect on action potentials. Both nifedipine and nimodipine at maximal concentrations were found to reduce the HVA calcium current in freshly dissociated neurons to the same extent. The N-type calcium channel inhibitor, omega-conotoxin GVIA (100 nM), irreversibly inhibited the sI(AHP) by 37%. Together, omega-conotoxin (100 nM) and nifedipine (10 microM) inhibited the sI(AHP) by 70%. 10 microM ryanodine also reduced the sI(AHP) by 30%, suggesting a role for calcium-induced calcium release. It is concluded that activation of the sI(AHP) in cultured hippocampal pyramidal cells is mediated by a rise in intracellular calcium involving multiple pathways and not just entry via L-type calcium channels.  (+info)

Effects of halothane on the membrane potential in skeletal muscle of the frog. (55/460)

Halothane has many effects on the resting membrane potential (V(m)) of excitable cells and exerts numerous effects on skeletal muscle one of which is the enhancement of Ca(2+) release by the sarcoplasmic reticulum (SR) resulting in a sustained contracture. The aim of this study was to analyse the effects of clinical doses of halothane on V(m), recorded using intracellular microelectrodes on cleaned and non stimulated sartorius muscle which was freshly isolated from the leg of the frog Rana esculenta. We assessed the mechanism of effects of superfused halothane on V(m) by the administration of selective antagonists of membrane bound Na(+), K(+) and Cl(-) channels and by inhibition of SR Ca(2+) release. Halothane (3%) induced an early and transient depolarization (4.5 mV within 7 min) and a delayed and sustained hyperpolarization (about 11 mV within 15 min) of V(m). The halothane-induced transient depolarization was sensitive to ryanodine (10 microM) and to 4-acetamido-4'-isothiocyanatostilbene 2,2' disulphonic acid (SITS, 1 mM). The hyperpolarization of V(m) induced by halothane (0.1 - 3%) was dose-dependent and reversible. It was insensitive to SITS (1 mM), tetrodotoxin (0.6 microM), and tetraethylammonium (10 mM) but was blocked and/or prevented by ryanodine (10 microM), charybdotoxin (CTX, 1 microM), and glibenclamide (10 nM). Our observations revealed that the effects of halothane on V(m) may be related to the increase in intracellular Ca(2+) concentration produced by the ryanodine-sensitive Ca(2+) release from the SR induced by the anaesthetic. The depolarization may be attributed to the activation of Ca(2+)-dependent Cl(-) (blocked by SITS) channels and the hyperpolarization to the activation of large conductance Ca(2+)-dependent K(+) channels, blocked by CTX, and to the opening of ATP-sensitive K(+) channels, inhibited by glibenclamide.  (+info)

hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. (56/460)

We cloned two beta subunits of large-conductance calcium-activated potassium (BK) channels, hKCNMB3 (BKbeta1) and hKCNMB4 (BKbeta4). Profiling mRNA expression showed that hKCNMB3 expression is enriched in testis and hKCNMB4 expression is very prominent in brain. We coexpressed BK channel alpha (BKalpha) and BKbeta4 subunits in vitro in CHO cells. We compared BKalpha/beta4 mediated currents with those of smooth muscle BKalpha/beta1 channels. BKbeta4 slowed activation kinetics more significantly, led to a steeper apparent calcium sensitivity, and shifted the voltage range of BK current activation to more negative potentials than BKbeta1. BKalpha/beta4 channels were not blocked by 100 nM charybdotoxin or iberiotoxin, and were activated by 17beta-estradiol.  (+info)