The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum. (41/158)

The nucleus contains a network of tubular invaginations of the nuclear envelope (NE), termed the nucleoplasmic reticulum (NR), implicated in transport, gene expression, and calcium homeostasis. Here, we show that proliferation of the NR, measured by the frequency of NE invaginations and tubules, is regulated by CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha), the nuclear and rate-limiting enzyme in the CDP-choline pathway for phosphatidylcholine (PtdCho) synthesis. In Chinese hamster ovary (CHO)-K1 cells, fatty acids triggered activation and translocation of CCTalpha onto intranuclear tubules characteristic of the NR. This was accompanied by a twofold increase in NR tubules quantified by immunostaining for lamin A/C or the NE. CHO MT58 cells expressing a temperature-sensitive CCTalpha allele displayed reduced PtdCho synthesis and CCTalpha expression and minimal proliferation of the NR in response to oleate compared with CHO MT58 cells stably expressing CCTalpha. Expression of CCTalpha mutants in CHO58 cells revealed that both enzyme activity and membrane binding promoted NR proliferation. In support of a direct role for membrane binding in NR tubule formation, recombinant CCTalpha caused the deformation of liposomes into tubules in vitro. This demonstrates that a key nuclear enzyme in PtdCho synthesis coordinates lipid synthesis and membrane deformation to promote formation of a dynamic nuclear-cytoplasmic interface.  (+info)

Phosducin-like protein regulates G-protein betagamma folding by interaction with tailless complex polypeptide-1alpha: dephosphorylation or splicing of PhLP turns the switch toward regulation of Gbetagamma folding. (42/158)

Phosducin-like protein (PhLP) exists in two splice variants PhLP(LONG) (PhLP(L)) and PhLP(SHORT) (PhLP(S)). Whereas PhLP(L) directly inhibits Gbetagamma-stimulated signaling, the G betagamma-inhibitory mechanism of PhLP(S) is not understood. We report here that inhibition of Gbetagamma signaling in intact HEK cells by PhLP(S) was independent of direct Gbetagamma binding; however, PhLP(S) caused down-regulation of Gbeta and Ggamma proteins. The down-regulation was partially suppressed by lactacystine, indicating the involvement of proteasomal degradation. N-terminal fusion of Gbeta or Ggamma with a dye-labeling protein resulted in their stabilization against down-regulation by PhLP(S) but did not lead to a functional rescue. Moreover, in the presence of PhLP(S), stabilized Ggamma subunits did not coprecipitate with stabilized Gbeta subunits, suggesting that PhLP(S) might interfere with Gbetagamma folding. PhLP(S) and several truncated mutants of PhLP(S) interacted with the subunit tailless complex polypeptide-1alpha (TCP-1alpha) of the CCT chaperonin complex, which is involved in protein folding. Knock-down of TCP-1alpha in HEK cells by small interfering RNA also led to down-regulation of Gbetagamma. We therefore conclude that the strong inhibitory action of PhLP(S) on Gbetagamma signaling is the result of a previously unrecognized mechanism of Gbetagamma-regulation, inhibition of Gbetagamma-folding by interference with TCP-1alpha.  (+info)

CCT chaperonin complex is required for the biogenesis of functional Plk1. (43/158)

Experiments from several different organisms have demonstrated that polo-like kinases are involved in many aspects of mitosis and cytokinesis. Here, we provide evidence to show that Plk1 associates with chaperonin-containing TCP1 complex (CCT) both in vitro and in vivo. Silencing of CCT by use of RNA interference (RNAi) in mammalian cells inhibits cell proliferation, decreases cell viability, causes cell cycle arrest with 4N DNA content, and leads to apoptosis. Depletion of CCT in well-synchronized HeLa cells causes cell cycle arrest at G(2), as demonstrated by a low mitotic index and Cdc2 activity. Complete depletion of Plk1 in well-synchronized cells also leads to G(2) block, suggesting that misfolded Plk1 might be responsible for the failure of CCT-depleted cells to enter mitosis. Moreover, partial depletion of CCT or Plk1 leads to mitotic arrest. Finally, the CCT-depleted cells reenter the cell cycle upon reintroduction of the purified constitutively active form of Plk1, indicating that Plk1 might be a CCT substrate.  (+info)

The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking. (44/158)

The hetero-oligomeric eukaryotic chaperonin TRiC (TCP-1-ring complex, also called CCT) interacts cotranslationally with a diverse subset of newly synthesized proteins, including actin, tubulin, and luciferase, and facilitates their correct folding. A photocross-linking approach has been used to map the contacts between individual chaperonin subunits and ribosome-bound nascent chains of increasing length. Whereas a cryo-EM study suggests that chemically denatured actin interacts with only two TRiC subunits (delta and either beta or epsilon), actin and luciferase chains photocross-link to at least six TRiC subunits (alpha, beta, delta, epsilon, xi, and theta) at different stages of translation. Furthermore, the photocross-linking of actin, but not luciferase, nascent chains to TRiC subunits zeta and theta was length-dependent. In addition, a single photoreactive probe incorporated at a unique site in actin nascent chains of different lengths reacted covalently with multiple TRiC subunits, thereby indicating that the nascent chain samples the polypeptide binding sites of different subunits. We conclude that elongating actin and luciferase nascent chains contact multiple TRiC subunits upon emerging from the ribosome, and that the TRiC subunits contacted by nascent actin change as it elongates and starts to fold.  (+info)

Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". (45/158)

Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.  (+info)

Expression of mRNA for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. (46/158)

Summer-diapause and winter-diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae), were significantly more cold hardy than nondiapause, prediapause, and postdiapause pupae. Moreover, cold acclimation of nondiapause pupae conferred strong cold hardiness comparable with that of diapause pupae. Differential display analysis revealed that the expression of a gene encoding TCP-1 (the t-complex polypeptide-1), a subunit of chaperonin CCT, in D antiqua (DaTCP-1) is upregulated in the pupae that express enhanced cold hardiness. Quantitative real-time polymerase chain reaction analyses showed that the levels of DaTCP-1 messenger RNA in pupal tissues, brain, and midgut in particular, are highly correlated with the cold hardiness of the pupae. These findings suggest that the upregulation of DaTCP-1 expression is related to enhanced cold hardiness in D antiqua. The upregulation of CCT in response to low temperature in an organism other than the yeast is newly reported.  (+info)

Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. (47/158)

BACKGROUND: Mutilating sensory neuropathy with spastic paraplegia is a very rare disease with both autosomal dominant and recessive modes of inheritance. We previously mapped the locus of the autosomal recessive form to a 25 cM interval between markers D5S2048 and D5S648 on chromosome 5p. In this candidate interval, the Cct5 gene encoding the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (CCT) was the most obvious candidate gene since mutation in the Cct4 gene encoding the CCT delta subunit has been reported to be associated with autosomal recessive mutilating sensory neuropathy in mutilated foot (mf) rat mutant. METHODS: A consanguineous Moroccan family with four patients displaying mutilating sensory neuropathy associated with spastic paraplegia was investigated. To identify the disease causing gene, the 11 coding exons of the Cct5 gene were screened for mutations by direct sequencing in all family members including the four patients, parents, and six at risk relatives. RESULTS: Sequence analysis of the Cct5 gene revealed a missense A492G mutation in exon 4 that results in the substitution of a highly conserved histidine for arginine amino acid 147. Interestingly, R147 was absent in 384 control matched chromosomes tested. CONCLUSION: This is the first disease causing mutation that has been identified in the human CCT subunit genes; the mf rat mutant could serve as an animal model for studying these chaperonopathies.  (+info)

PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates. (48/158)

Many ATP-dependent molecular chaperones, including Hsp70, Hsp90, and the chaperonins GroEL/Hsp60, require cofactor proteins to regulate their ATPase activities and thus folding functions in vivo. One conspicuous exception has been the eukaryotic chaperonin CCT, for which no regulator of its ATPase activity, other than non-native substrate proteins, is known. We identify the evolutionarily conserved PhLP3 (phosducin-like protein 3) as a modulator of CCT function in vitro and in vivo. PhLP3 binds CCT, spanning the cylindrical chaperonin cavity and contacting at least two subunits. When present in a ternary complex with CCT and an actin or tubulin substrate, PhLP3 significantly diminishes the chaperonin ATPase activity, and accordingly, excess PhLP3 perturbs actin or tubulin folding in vitro. Most interestingly, however, the Saccharomyces cerevisiae PhLP3 homologue is required for proper actin and tubulin function. This cellular role of PhLP3 is most apparent in a strain that also lacks prefoldin, a chaperone that facilitates CCT-mediated actin and tubulin folding. We propose that the antagonistic actions of PhLP3 and prefoldin serve to modulate CCT activity and play a key role in establishing a functional cytoskeleton in vivo.  (+info)