Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. (1/1959)

Both chlamydial and human heat shock protein 60s (HSP 60), which colocalize in human atheroma, may contribute to inflammation during atherogenesis. We tested the hypothesis that chlamydial or human HSP 60 activates human endothelial cells (ECs), smooth muscle cells (SMCs), and monocyte-derived macrophages. We examined the expression of adhesion molecules such as endothelial-leukocyte adhesion molecule-1 (E-selectin), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), and the production of the proinflammatory cytokine interleukin-6 (IL-6). We also tested whether either HSP 60 induces nuclear factor-kappaB (NF-kappaB), which contributes to the gene expression of these molecules. Either chlamydial or human HSP 60 induced E-selectin, ICAM-1, and VCAM-1 expression on ECs similar to levels induced by Escherichia coli lipopolysaccharide (LPS). Each HSP 60 also significantly induced IL-6 production by ECs, SMCs, and macrophages to an extent similar to that induced by E. coli LPS, as assessed by enzyme-linked immunosorbent assay (ELISA). In ECs, either HSP 60 triggered activation of NF-kappaB complexes containing p65 and p50 Rel proteins. Heat treatment abolished all these effects, but did not alter the ability of E. coli LPS to induce these functions. Chlamydial and human HSP 60s therefore activate human vascular cell functions relevant to atherogenesis and lesional complications. These findings help to elucidate the mechanisms by which a chronic asymptomatic chlamydial infection might contribute to the pathophysiology of atheroma.  (+info)

Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histolytica. (2/1959)

Entamoeba histolytica is a microaerophilic protozoan parasite in which neither mitochondria nor mitochondrion-derived organelles have been previously observed. Recently, a segment of an E. histolytica gene was identified that encoded a protein similar to the mitochondrial 60-kDa heat shock protein (Hsp60 or chaperonin 60), which refolds nuclear-encoded proteins after passage through organellar membranes. The possible function and localization of the amebic Hsp60 were explored here. Like Hsp60 of mitochondria, amebic Hsp60 RNA and protein were both strongly induced by incubating parasites at 42 degreesC. 5' and 3' rapid amplifications of cDNA ends were used to obtain the entire E. histolytica hsp60 coding region, which predicted a 536-amino-acid Hsp60. The E. histolytica hsp60 gene protected from heat shock Escherichia coli groEL mutants, demonstrating the chaperonin function of the amebic Hsp60. The E. histolytica Hsp60, which lacked characteristic carboxy-terminal Gly-Met repeats, had a 21-amino-acid amino-terminal, organelle-targeting presequence that was cleaved in vivo. This presequence was necessary to target Hsp60 to one (and occasionally two or three) short, cylindrical organelle(s). In contrast, amebic alcohol dehydrogenase 1 and ferredoxin, which are bacteria-like enzymes, were diffusely distributed throughout the cytosol. We suggest that the Hsp60-associated, mitochondrion-derived organelle identified here be named "crypton," as its structure was previously hidden and its function is still cryptic.  (+info)

Effect of transforming growth factor beta on experimental Salmonella typhimurium infection in mice. (3/1959)

We have investigated the effect of the in vivo administration of recombinant transforming growth factor beta (rTGF-beta) on the pathogenic mechanisms involved in Salmonella typhimurium experimental infection in mice. The protective response elicited by macrophages was induced by rTGF-beta1 by 2 days after experimental infection, as demonstrated by an increased NO production, while the humoral protective effect began with cytokine mRNA expression 2 days after the challenge and continued after 5 days with cytokine release and lymphocyte activation. We demonstrated that all mice who received rTGF-beta1 survived 7 days after infection. The number of bacteria recovered in the spleens and in the livers of rTGF-beta1-treated mice 2 and 5 days after infection was significantly smaller than that found in the same organs after phosphate-buffered saline (PBS) inoculation. Furthermore, 2 and 5 days after infection, splenic macrophages from rTGF-beta1-treated mice showed a greater NO production than did those from PBS-treated mice. The effect of rTGF-beta1 on S. typhimurium infection in mice was correlated with the expression of cell costimulatory CD28 molecules. Five days after S. typhimurium infection, the percentage of CD28(+)-expressing T cells in splenic lymphocytes from rTGF-beta1-treated mice increased with respect to that from control mice. Gamma interferon (IFN-gamma) mRNA was present in a greater amount in spleen cells from rTGF-beta1-treated mice after 2 days, although the intensity of the band decreased 5 days after the challenge. A similar pattern was obtained with the mRNAs for interleukin-1alpha (IL-1alpha), IL-6, TGF-beta, and inducible nitric oxide synthase, which showed greater expression in cells obtained from rTGF-beta1-treated and S. typhimurium-infected mice 2 days after challenge. The treatment with rTGF-beta1 induced an increase in IL-1alpha and IFN-gamma release in the supernatant of splenocyte cultures 5 days after the experimental infection with S. typhimurium. Moreover, we demonstrated that 5 days after infection, the IFN-gamma titer was significantly greater in the sera of rTGF-beta-treated mice than in those of PBS-treated mice. Also, hsp60 showed greater expression 2 days after the challenge in splenocytes from rTGF-beta1-treated mice. The role played by proinflammatory and immunoregulatory cytokines and by CD28 is discussed.  (+info)

Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. (4/1959)

Changes in the vibrational spectrum of the chaperonin GroEL in the presence of ADP and ATP have been followed as a function of time using rapid scan Fourier transform infrared spectroscopy. The interaction of nucleotides with GroEL was triggered by the photochemical release of the ligands from their corresponding biologically inactive precursors (caged nucleotides; P3-1-(2-nitro)phenylethyl nucleotide). Binding of either ADP or ATP induced the appearance of small differential signals in the amide I band of the protein, sensitive to protein secondary structure, suggesting a subtle and localized change in protein conformation. Moreover, conformational changes associated with ATP hydrolysis were detected that differed markedly from those observed upon nucleotide binding. Both, high-amplitude absorbance changes and difference bands attributable to modifications in the interaction between oppositely charged residues were observed during ATP hydrolysis. Once this process had occurred, the protein relaxed to an ADP-like conformation. Our results suggest that the secondary structure as well as salt bridges of GroEL are modified during ATP hydrolysis, as compared with the ATP and ADP bound protein states.  (+info)

Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. (5/1959)

Recent data suggest that the immune system is involved in atherogenesis. Thus, interest has been raised as to the possible antigens that could serve as the initiators of the immune reaction. In the current work, we studied the effects of immunization with recombinant heat shock protein-65 (HSP-65) and HSP-65-rich Mycobacterium tuberculosis (MT) on early atherogenesis in C57BL/6J mice fed either a normal chow diet or a high-cholesterol diet (HCD). A rapid, cellular immune response to HSP-65 was evident in mice immunized with HSP-65 or with MT but not in the animals immunized with phosphate-buffered saline (PBS) alone. Early atherosclerosis was significantly enhanced in HCD-fed mice immunized with HSP-65 (n=10; mean aortic lesion size, 45 417+/-9258 microm2) or MT (n=15; 66 350+/-6850 microm2) compared with PBS-injected (n=10; 10 028+/-3599 microm2) or nonimmunized (n=10; 9500+/-2120 microm2) mice. No fatty streak lesions were observed in mice fed a chow diet regardless of the immunization protocol applied. Immunohistochemical analysis of atherosclerotic lesions from the HSP-65- and MT-immunized mice revealed infiltration of CD4 lymphocytes compared with the relatively lymphocyte-poor lesions in the PBS-treated or nonimmunized mice. Direct immunofluorescence analysis of lesions from HSP-65- and MT-immunized mice fed an HCD exhibited extensive deposits of immunoglobulins compared with the fatty streaks in the other study groups, consistent with the larger and more advanced lesions found in the former 2 groups. This model, which supports the involvement of HSP-65 in atherogenesis, furnishes a valuable tool to study the role of the immune system in atherogenesis.  (+info)

Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription-PCR. (6/1959)

The possibility of using levels of specific mRNAs in individual bacteria as indicators of single-cell physiology was investigated. Estimates of the numbers of groEL and tsf mRNAs per cell in Salmonella typhimurium cells in different physiological states were obtained by Northern analysis. The average number of groEL mRNAs per cell was estimated to be 22 in fast-growing cultures and 197 in heat-shocked cultures. The average number of tsf mRNAs per cell was estimated to be 37 in fast-growing cultures, 4 in slow-growing cultures, and 0 in nongrowing cultures. The potential of mRNA-targeted in situ reverse transcription (RT)-PCR to monitor quantitatively different levels of groEL and tsf mRNA in individual cells and thus monitor both specific gene induction and general growth activity was assessed. Neither groEL nor tsf mRNA was present in stationary-phase cells, but it was shown that stationary-phase cells contain other RNA species at high levels, which may provide a possibility for monitoring directly stationary-phase individual cells by the use of in situ RT-PCR. The outcome of the in situ RT-PCR analyses indicated that a population of fast-growing cells is heterogeneous with respect to groEL mRNA single-cell contents, suggesting a cell-cycle-controlled expression of groEL in S. typhimurium, whereas a fast-growing culture is homogeneous with respect to tsf mRNA single-cell contents, suggesting that the level of tsf mRNA is relatively constant during the cell cycle.  (+info)

Molecular chaperones: pathways and networks. (7/1959)

Some proteins synthesized by growing eukaryotic cells are transferred along unidirectional pathways of molecular chaperones until the risk of aggregation has decreased and they can be released safely. Mature proteins denatured by stress may instead be handled by chaperones acting in branched, reversible networks.  (+info)

Identification of Mycobacterium kansasii by using a DNA probe (AccuProbe) and molecular techniques. (8/1959)

The newly formulated Mycobacterium kansasii AccuProbe was evaluated, and the results obtained with the new version were compared to the results obtained with the old version of this test by using 116 M. kansasii strains, 1 Mycobacterium gastri strain, and 19 strains of several mycobacterial species. The sensitivity of this new formulation was 97.4% and the specificity was 100%. Still, three M. kansasii strains were missed by this probe. To evaluate the variability within the species, genetic analyses of the hsp65 gene, the spacer sequence between the 16S and 23S rRNA genes, and the 16S rRNA gene of several M. kansasii AccuProbe-positive strains as well as all AccuProbe-negative strains were performed. Genetic analyses of the one M. gastri strain from the comparative assay and of two further M. gastri strains were included because of the identity of the 16S rRNA gene in M. gastri to that in M. kansasii. The data confirmed the genetic heterogeneity of M. kansasii. Furthermore, a subspecies with an unpublished hsp65 restriction pattern and spacer sequence was described. The genetic data indicate that all M. kansasii strains missed by the AccuProbe test belong to one subspecies, the newly described subspecies VI, as determined by the hsp65 restriction pattern and the spacer sequence. Since the M. kansasii strains that are missed are rare and all M. gastri strains are correctly negative, the new formulated AccuProbe provides a useful tool for the identification of M. kansasii.  (+info)