Is endothelin-1 an aggravating factor in the development of acute pancreatitis? (33/463)

OBJECTIVE: We have reported previously that cerulein-induced edematous pancreatitis would transform into hemorrhagic pancreatitis by administration of endothelin-1 in rats. In the present study, we tried to protect rat model from developing into hemorrhagic pancreatitis with BQ123 (an ETA receptor antagonist). METHODS: The rat model was made by 5-hour restraint water-immersion stress and two intraperitoneal injections of cerulein (40 micrograms/kg) at hourly interval. BQ123 (3 or 6 mg/kg) was administered intravenously 30 minutes before and 2 hours after the first cerulein injection. RESULTS: Acute hemorrhagic pancreatitis was induced in all rats treated with cerulin + stress. The score for pancreatic hemorrhage was 2.4 +/- 0.2 in this group. In the rats pretreated with BQ123, the score was reduced to 1.0 +/- 0.0, pancreas wet weight and serum amylase activity were significantly reduced, and histologic alterations in the pancreas lightened, also the local pancreatic blood flow improved without affecting the systemic blood pressure. CONCLUSIONS: These results suggest that endothelin-1 should play a role in aggravating the development of acute hemorrhagic pancreatitis, through its action on the pancreatic microcirculation.  (+info)

Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. (34/463)

Intra-acinar cell activation of digestive enzyme zymogens including trypsinogen is generally believed to be an early and critical event in acute pancreatitis. We have found that the phosphatidylinositol 3-kinase inhibitor wortmannin can reduce the intrapancreatic activation of trypsinogen that occurs during two dissimilar experimental models of rodent acute pancreatitis, secretagogue- and duct injection-induced pancreatitis. The severity of both models was also reduced by wortmannin administration. In contrast, the NF-kappa B activation that occurs during the early stages of secretagogue-induced pancreatitis is not altered by administration of wortmannin. Ex vivo, caerulein-induced trypsinogen activation is inhibited by wortmannin and LY294002. However, the cytoskeletal changes induced by caerulein were not affected by wortmannin. Concentrations of caerulein that induced ex vivo trypsinogen activation do not significantly increase phosphatidylinositol-3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate levels or induce phosphorylation of Akt/PKB, suggesting that class I phosphatidylinositol 3-kinases are not involved. The concentration of wortmannin that inhibits trypsinogen activation causes a 75% decrease in phosphatidylinositol 3-phosphate, which is implicated in vesicle trafficking and fusion. We conclude that a wortmannin-inhibitable phosphatidylinositol 3-kinase is necessary for intrapancreatic activation of trypsinogen and regulating the severity of acute pancreatitis. Our observations suggest that phosphatidylinositol 3-kinase inhibition might be of benefit in preventing acute pancreatitis.  (+info)

Ethacrynic acid inhibits pancreatic exocrine secretion. (35/463)

AIM: The effect of ethacrynic acid on pancreatic exocrine secretion function and potential mechanisms of interference with the secretory process in pancreatic acinar cells were investigated. METHODS: After incubation with ethacrynic acid for 30 min, caerulein-stimulated amylase release and cholecystokinin (CCK) receptor binding characteristics were assessed in isolated rat pancreatic acini. The level of thiol groups (glutathione and protein thiols) and cytosolic free calcium were measured in pancreatic acinar cells. RESULTS: Ethacrynic acid decreased caerulein (0.1 nmol/L)-stimulated amylase release and the level of pancreatic acinar glutathione in a concentration-dependent fashion without a marked increase in cell damage. Ethacrynic acid also inhibited the caerulein (1 nmol/L)-induced Ca2+ mobilization in pancreatic acinar cells. But neither protein thiol nor CCK-receptor binding characteristics was altered by ethacrynic acid. CONCLUSION: Ethacrynic acid inhibit pancreatic exocrine secretion by depletion of glutathione and down-regulation of caerulein-induced Ca2+ mobilization. Glutathione might play a potential role in the secretory process in pancreatic acinar cells and in the secretory blockade observed in acute pancreatitis.  (+info)

MCP-1 but not CINC synthesis is increased in rat pancreatic acini in response to cerulein hyperstimulation. (36/463)

Inflammatory mediators including chemokines play a critical role in acute pancreatitis. The precise nature of early inflammatory signals within the pancreas remains, however, unclear. We examined the ability of isolated pancreatic acini to synthesize CC chemokine monocyte chemotactic protein-1 (MCP-1) and CXC chemokine cytokine-induced neutrophil chemoattractant (CINC) and the response to the secretagogue cerulein at physiological and supraphysiological concentrations. Isolated rat pancreatic acini maintained in short-term (< or =48 h) primary culture constitutively synthesized MCP-1 and CINC. Cerulein (10(-7) M; supramaximal dose) increased production of MCP-1 but not CINC. Cerulein-induced increase in MCP-1 synthesis was accompanied by increase in nuclear factor (NF)-kappaB activation shown by EMSA. Pretreatment with NF-kappaB inhibitors N-acetylcysteine (NAC) and N-tosylphenyalanine chloromethyl ketone (TPCK) blocked cerulein-induced NF-kappaB activation and abolished cerulein's effect on MCP-1 synthesis. Pretreatment with calcium antagonist BAPTA-AM also blocked cerulein's effect on MCP-1 synthesis. These results indicate that isolated acini synthesize MCP-1 and CINC and support the idea of acinar-derived chemokines as early mediators of inflammatory response in acute pancreatitis. Although cerulein hyperstimulation increased MCP-1 synthesis by a calcium-dependent mechanism involving NF-kappaB activation, CINC synthesis was not affected. This suggests that regulation of CC and CXC chemokines within acinar cells may be quite different.  (+info)

Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas. (37/463)

BACKGROUND AND AIM: Recent studies have indicated that prior thermal stress causes upregulation of heat shock protein 70 (HSP70) expression in the pancreas and protects against secretagogue induced pancreatitis. The mechanisms responsible for the protective effect are not known. Similarly, the effects of prior non-thermal stress on HSP70 expression and pancreatitis are not known. The current studies were designed to specifically address these issues. METHODS: In the current studies pancreatitis was induced by administration of a supramaximally stimulating dose of caerulein 12 hours after thermal stress and 24 hours after non-thermal (that is, beta adrenergic stimulation) stress. RESULTS: Both thermal and non-thermal stresses caused pancreatic HSP70 levels to rise and resulted in increased expression of HSP70 in acinar cells. Both forms of stresses protected against caerulein induced pancreatitis and prevented the early intrapancreatic activation of trypsinogen which occurs in this model of pancreatitis. CONCLUSIONS: These results suggest that both thermal and non-thermal stresses protect against pancreatitis by preventing intrapancreatic digestive enzyme activation and that HSP70 may mediate this protective effect.  (+info)

Effect of sensory nerves and CGRP on the development of caerulein-induced pancreatitis and pancreatic recovery. (38/463)

The function of primary sensory neurons is to receive and transmit information from external environment and these neurons are able to release neuromediators from the activated peripheral endings. The aim of this study was to determine the influence of sensory nerves and administration of their mediator--calcitonin gene related peptide (CGRP) on the course of acute pancreatitis (AP). Ablation of sensory nerves was performed by neurotoxic dose of capsaicin (100 mg/kg). Single or repeated episodes of AP were induced by caerulein infusion (10 microg/kg/h for 5 h). Five repeated AP were performed once a week. Capsaicin at the dose which stimulates sensory nerves (0.5 mg/kg/dose) or CGRP (10 microg/kg/dose) was administrated before and during or after single induction of AP, as well as, after each induction of repeated AP. Rats were killed at the time 0, 3 or 9 h after single induction of AP or two weeks after last induction of repeated AP. Ablation of sensory nerves aggravated pancreatic damage in caerulein-induced AP. Treatment with stimulatory doses of capsaicin or CGRP before and during single induction of AP attenuated the pancreatic damage in morphological examination. This effect was also manifested by partial reversion of AP evoked drop in DNA synthesis and pancreatic blood flow (PBF). Administration of CGRP after single AP induction aggravated histologically manifested pancreatic damage. The further decrease in PBF and DNA synthesis was also observed. Animals with five episodes of AP showed almost full pancreatic recovery two weeks after last induction of AP concerning all parameters tested. In stimulatory doses of capsaicin treated rats, we observed the decrease in pancreatic amylase and fecal chymotrypsin activity, as well as, the drop in DNA synthesis. Similar but less pronounced effects were observed after treatment with CGRP. We conclude that effect of sensory nerves and CGRP on AP is two-phase and time dependent. Stimulation of sensory nerves or the administration of CGRP during development of AP exhibits protective effects against pancreatic damage induced by caerulein overstimulation. After induction of AP, persistent activity of sensory nerves and presence of CGRP aggravate pancreatic damage and lead to functional insufficiency typical for chronic pancreatitis.  (+info)

Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation. (39/463)

A premature and intracellular activation of digestive zymogens is thought to be responsible for the onset of pancreatitis. Because trypsin has a critical role in initiating the activation cascade of digestive enzymes in the gut, it has been assumed that trypsin also initiates intracellular zymogen activation in the pancreas. We have tested this hypothesis in isolated acini and lobules from rat pancreas. Intracellular trypsinogen activation was induced by supramaximal secretagogue stimulation and measured using either specific trypsin substrates or immunoreactivity of the trypsinogen activation peptide (TAP). To prevent a trypsin-induced trypsinogen activation, we used the cell-permeant, highly specific, and reversible inhibitor Nalpha-(2-naphthylsulfonyl)-3-amidinophenylalanine-carboxymethylpiperazide (S124), and to prevent cathepsin-induced trypsinogen activation, we used the cysteine protease inhibitor E-64d. Incubation of acini or lobules in the presence of S124 completely prevented the generation of trypsin activity in response to supramaximal caerulein but had no effect whatsoever on the generation of TAP. Conversely, when trypsin activity was recovered at the end of the experiment by either washout of S124 from acini or extensive dilution of lobule homogenates, it was up to 400% higher than after caerulein alone and corresponded, in molar terms, to the generation of TAP. Both trypsin activity and TAP release were inhibited in parallel by E-64d. We conclude that caerulein-induced trypsinogen activation in the pancreas is caused by an E-64d-inhibitable mechanism such as cathepsin-induced trypsinogen activation, and neither involves nor requires intracellular trypsin activity. Specific trypsin inhibition, on the other hand, prevents 80% of trypsin inactivation or autodegradation in the pancreas.  (+info)

Stress kinase inhibition modulates acute experimental pancreatitis. (40/463)

AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.  (+info)