Cerebral amyloid angiopathy associated with hemorrhage: immunohistochemical study of 41 biopsy cases. (17/260)

The relationship between cerebral amyloid angiopathy and hemorrhage was investigated by an immunohistochemical study of biopsy cases to characterize the involvement of amyloid beta-protein, apolipoprotein E, and cystatin C in cerebral amyloid angiopathy associated with hemorrhage. The amyloid-laden vessels were examined in biopsy specimens from 41 surgical cases of sporadic cerebral amyloid angiopathy (36 cases with hemorrhage and 5 cases without hemorrhage), using immunohistochemical staining with antibodies against amyloid beta-protein, apolipoprotein E, cystatin C, and alpha-smooth muscle actin. The relationship between the occurrence, recurrence, and enlargement of the hemorrhage, and the semiquantitative estimation of the cerebrovascular amyloid-related protein deposition was analyzed using Fisher's exact test. Severe amyloid beta-protein (p < 0.013) and apolipoprotein E (p < 0.013) immunoreactivity were risk factors for the occurrence of the hemorrhage. Severe cystatin C immunoreactivity was a risk factor for the occurrence (p < 0.002) and enlargement (p < 0.014) of the hemorrhage, and tended to induce recurrent hemorrhage (p < 0.103). In addition, loss of the vascular smooth muscle was observed in the intensely amyloid-laden vascular walls that showed cystatin C-immunoreactivity. The present study indicates that intense amyloid beta-protein deposition with cystatin C deposition weakens the cerebrovascular walls, and that cystatin C deposition is a strong predictor of hemorrhage in cerebral amyloid angiopathy.  (+info)

No association of paraoxonase genotype or atherosclerosis with cerebral amyloid angiopathy. (18/260)

BACKGROUND AND PURPOSE: Both cerebral amyloid angiopathy (CAA) and paraoxonase have been reported to be related to lipid metabolism and atherosclerosis. We investigated whether the paraoxonase gene (PON1) polymorphism and atherosclerosis are associated with risk of CAA. METHODS: Associations of the PON1 polymorphism and atherosclerosis of the aorta and coronary and cerebral arteries with the severity of CAA were investigated in 154 elderly Japanese individuals, including 47 patients with Alzheimer's disease. RESULTS: The PON1 polymorphism or severity of atherosclerosis of the arteries was not associated with the severity of CAA. CONCLUSIONS: The PON1 polymorphism and atherosclerosis would not appear to be associated with risk of CAA in the elderly, although further study with larger samples is necessary for confirmation.  (+info)

Novel ABCA1 compound variant associated with HDL cholesterol deficiency. (19/260)

The recent discovery of an ATP-binding cassette transporter, ABCA1, as an important regulator of high density lipoprotein (HDL) metabolism and reverse cholesterol transport has facilitated the identification of novel variants associated with HDL cholesterol deficiency states. We identified a subject with HDL cholesterol deficiency (4 mg/dl) who developed and died of complications related to cerebral amyloid angiopathy (CAA). The proband had a compound heterozygous mutation. One mutation was a G3295T substitution with conversion of asparagine to tyrosine (D1099Y) in ABCA1. The single-base substitution at codon 1099 resulted in the abolition of an RsaI cleavage site. The proband and affected individuals having another mutation were heterozygotes for T5966C with phenylalanine converted to serine (F2009S). The presence of the T5966C mutation was detected by restriction digestion with HinfI. These variants were not identified in over 400 chromosomes of healthy subjects. In the kindred, family members heterozygous for the ABCA1 variant exhibited low levels of HDL cholesterol. Direct sequencing of all coding regions and splice site junctions of other HDL candidate genes revealed no additional mutations, indicating that combined defective ABCA1 alleles may result in familial HDL deficiency.  (+info)

Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. (20/260)

BACKGROUND AND PURPOSE: The watershed cortical areas are the first to be deprived of sufficient blood flow in the event of cerebral hypoperfusion and will be the sites of watershed microinfarcts. Cerebral hypoperfusion is associated with Alzheimer disease (AD), but information regarding the occurrence of watershed cortical infarcts in AD is lacking. METHODS: Brains of 184 autopsy cases (105 definite AD cases and 79 age-matched controls) were selected and analyzed by histochemical and immunohistochemical techniques. The 3-dimensional reconstruction of the whole cerebrum, with 3-mm spaced serial sections, was performed in 6 AD cases to study the intrahemispheric and interhemispheric distribution of the cortical microinfarcts. RESULTS: A significant association (P=0.001) was found between the occurrence of watershed cortical infarcts and AD (32.4% versus 2.5% in controls). The microinfarcts were restricted to the watershed cortical zones. Congophilic angiopathy was revealed to be an important risk factor. Perturbed hemodynamic factors (eg, decreased blood pressure) may play a role in the genesis of cortical watershed microinfarcts. CONCLUSIONS: In AD, cerebral hypoperfusion induces not only white matter changes but cortical watershed microinfarcts as well, further aggravating the degenerative process and worsening dementia. To prevent the formation of watershed cortical microinfarcts in AD, monitoring blood pressure and treating arterial hypotension are essential.  (+info)

Amyloid beta-protein stimulates the expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in human cerebrovascular smooth muscle cells. (21/260)

The accumulation of fibrillar amyloid-beta protein (A beta) in cerebral blood vessels, a condition known as cerebral amyloid angiopathy (CAA), is a key pathological feature of Alzheimer's disease and certain related disorders and is intimately associated with cerebrovascular cell death both in vivo and in vitro. Moreover, severe CAA leads to loss of vessel wall integrity and cerebral hemorrhage. Although the basis for these latter pathological consequences in CAA remains unresolved alterations in local proteolytic mechanisms may be involved. Here we show that pathogenic forms of A beta stimulate the expression of plasminogen activator activity in cultured human cerebrovascular smooth muscle (HCSM) cells, an in vitro model of CAA. RNase protection assays and plasminogen zymography showed that urokinase-type plasminogen activator (uPA) was responsible for this activity. There was preferential accumulation of uPA on the HCSM cell surface that was mediated through a concomitant increase in expression of the uPA receptor. In the presence of plasminogen there was robust degradation of A beta that was added to the HCSM cells resulting in restoration of cell viability. This suggests that increased expression of uPA may initially serve as a protective mechanism leading to localized degradation and clearance of the pathogenic stimulus A beta. On the other hand, chronic expression of uPA and plasminogen activation led to a profound loss of HCSM cell attachment. This suggests that a similar prolonged effect in vivo in the cerebral vessel wall may contribute to loss of integrity and cerebral hemorrhage in CAA.  (+info)

Association of neprilysin polymorphism with cerebral amyloid angiopathy. (22/260)

OBJECTIVES: The risk of sporadic cerebral amyloid angiopathy (CAA) may be associated with genetic polymorphisms of molecules related to anabolism or catabolism of amyloid beta protein (Abeta). The authors investigated whether a polymorphism of the gene (NEP) coding for neprilysin, an enzyme catabolising Abeta, is associated with CAA. METHODS: The study analysed the GT repeat polymorphism in the enhancer/promoter region of NEP and severity of CAA in 164 necropsied elderly Japanese subjects. RESULTS: The subjects had NEP polymorphisms with 19 to 23 GT repeats and were classified into nine genotypes. CAA severity was significantly higher in the subjects with up to 40 repeats in total than those with more than 40 repeats (p=0.005). There was a significant correlation between the number of the shorter alleles (19 or 20 repeats) and CAA severity (p=0.024). In addition, there was no interaction between the NEP polymorphism and apolipoprotein E genotype. CONCLUSIONS: These results suggest the association between the NEP polymorphism and the risk of CAA. Further study using more samples from populations with different ethnic backgrounds is necessary.  (+info)

Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer's disease. (23/260)

Alzheimer's disease (AD) is characterized by neurofibrillary tangles and by the accumulation of beta-amyloid (Abeta) peptides in senile plaques and in the walls of cortical and leptomeningeal arteries as cerebral amyloid angiopathy (CAA). There also is a significant increase of interstitial fluid (ISF) in cerebral white matter (WM), the pathological basis of which is largely unknown. We hypothesized that the accumulation of ISF in dilated periarterial spaces of the WM in AD correlates with the severity of CAA, with the total Abeta load in the cortex and with Apo E genotype. A total of 24 AD brains and 17 nondemented age-matched control brains were examined. CAA was seen in vessels isolated from brain by using EDTA-SDS lysis stained by Thioflavin-S. Total Abeta in gray matter and WM was quantified by immunoassay, ApoE genotyping by PCR, and dilatation of perivascular spaces in the WM was assessed by quantitative histology. The study showed that the frequency and severity of dilatation of perivascular spaces in the WM in AD were significantly greater than in controls (P< 0.001) and correlated with Abeta load in the cortex, with the severity of CAA, and with ApoE epsilon4 genotype. The results of this study suggest that dilation of perivascular spaces and failure of drainage of ISF from the WM in AD may be associated with the deposition of Abeta in the perivascular fluid drainage pathways of cortical and leptomeningeal arteries. This failure of fluid drainage has implications for therapeutic strategies to treat Alzheimer's disease.  (+info)

Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. (24/260)

Cerebral amyloid angiopathy (CAA) is a common cause of brain hemorrhage in the elderly. It is found in the majority of patients with Alzheimer's disease (AD). The most common form of CAA is characterized by the deposition of the amyloid-beta (Abeta) peptide in the walls of cerebral vessels, and this deposition can lead to hemorrhage and infarction. As in AD, the epsilon4 allele of apolipoprotein E (APOE) is a risk factor for CAA. To determine the effect of apoE on CAA and associated hemorrhage in vivo, we used two amyloid precursor protein (APP) transgenic mouse models that develop age-dependent Abeta deposition: PDAPP and APPsw mice. We found that both models developed an age-dependent increase in CAA and associated microhemorrhage, with the APPsw model having an earlier and more severe phenotype; however, when APPsw and PDAPP mice were bred onto an Apoe-/- background, no CAA was detected through 24 months of age, and there was little to no evidence of microhemorrhage. Biochemical analysis of isolated cerebral vessels from both PDAPP and APPsw mice with CAA revealed that, as in human CAA, the ratio of Abeta 40:42 was elevated relative to brain parenchyma. In contrast, the ratio of Abeta 40:42 from cerebral vessels isolated from old PDAPP, Apoe-/- mice was extremely low. These findings demonstrate that murine apoE markedly promotes the formation of CAA and associated vessel damage and that the effect of apoE combined with the level of Abeta40 or the ratio of Abeta 40:42 facilitates this process.  (+info)