Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. (9/1626)

Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. Interaction of the horizontal linear and angular vestibuloocular reflexes (lVOR and aVOR) was studied in rhesus and cynomolgus monkeys during centered rotation and off-center rotation at a constant velocity (centrifugation). During centered rotation, the eye velocity vector was aligned with the axis of rotation, which was coincident with the direction of gravity. Facing and back to motion centrifugation tilted the resultant of gravity and linear acceleration, gravito-inertial acceleration (GIA), inducing cross-coupled vertical components of eye velocity. These components were upward when facing motion and downward when back to motion and caused the axis of eye velocity to reorient from alignment with the body yaw axis toward the tilted GIA. A major finding was that horizontal time constants were asymmetric in each monkey, generally being longer when associated with downward than upward cross coupling. Because of these asymmetries, accurate estimates of the contribution of the horizontal lVOR could not be obtained by simply subtracting horizontal eye velocity profiles during facing and back to motion centrifugation. Instead, it was necessary to consider the effects of GIA tilts on velocity storage before attempting to estimate the horizontal lVOR. In each monkey, the horizontal time constant of optokinetic after-nystagmus (OKAN) was reduced as a function of increasing head tilt with respect to gravity. When variations in horizontal time constant as a function of GIA tilt were included in the aVOR model, the rising and falling phases of horizontal eye velocity during facing and back to motion centrifugation were closely predicted, and the estimated contribution of the compensatory lVOR was negligible. Beating fields of horizontal eye position were unaffected by the presence or magnitude of linear acceleration during centrifugation. These conclusions were evaluated in animals in which the low-frequency aVOR was abolished by canal plugging, isolating the contribution of the lVOR. Postoperatively, the animals had normal ocular counterrolling and horizontal eye velocity modulation during off-vertical axis rotation (OVAR), suggesting that the otoliths were intact. No measurable horizontal eye velocity was elicited by centrifugation with angular accelerations +info)

Fusogenic domains of golgi membranes are sequestered into specialized regions of the stack that can be released by mechanical fragmentation. (10/1626)

A well-characterized cell-free assay that reconstitutes Golgi transport is shown to require physically fragmented Golgi fractions for maximal activity. A Golgi fraction containing large, highly stacked flattened cisternae associated with coatomer-rich components was inactive in the intra-Golgi transport assay. In contrast, more fragmented hepatic Golgi fractions of lower purity were highly active in this assay. Control experiments ruled out defects in glycosylation, the presence of excess coatomer or inhibitory factors, as well as the lack or consumption of limiting diffusible factors as responsible for the lower activity of intact Golgi fractions. Neither Brefeldin A treatment, preincubation with KCl (that completely removed associated coatomer) or preincubation with imidazole buffers that caused unstacking, activated stacked fractions for transport. Only physical fragmentation promoted recovery of Golgi fractions active for transport in vitro. Rate-zonal centrifugation partially separated smaller transport-active Golgi fragments with a unique v-SNARE pattern, away from the bulk of Golgi-derived elements identified by their morphology and content of Golgi marker enzymes (N-acetyl glucosaminyl and galactosyl transferase activities). These fragments released during activation likely represent intra-Golgi continuities involved in maintaining the dynamic redistribution of resident enzymes during rapid anterograde transport of secretory cargo through the Golgi in vivo.  (+info)

Counterflow centrifugation allows addition of appropriate numbers of T cells to allogeneic marrow and blood stem cell grafts to prevent severe GVHD without substantial loss of mature and immature progenitor cells. (11/1626)

Using counterflow centrifugation elutriation (CCE) lymphocytes can be separated from CD34+ populations based on size. Immature progenitors tend to be smaller than mature cells suggesting that CCE introduces loss of stem cells. We compared the separation of 12 PBSC with 16 BM transplants. Cells were separated in 12 fractions (3000-2200 r.p.m.) and the rotor off (RO) fraction. Separation patterns of BM and PBSC were comparable. B cells were collected in the high speed fractions followed by T and NK cells. In contrast, progenitor cells were collected in lower speed fractions. By adding successively T cell-depleted fractions to the RO fraction a BM transplant could be composed containing 0.7 x 10(6) T cells/kg and 90%, 89% and 68% recovery of CD34+, CFU-GM and BFU-E. PBSC were separated in four CCE runs inducing higher numbers of T cells in the graft (4.4 x 10(6)/kg) and 54% CD34+, 46% CFU-GM and 37% BFU-E recovery. Time of engraftment was not delayed and no graft failure was observed. The higher number of T cells was not associated with higher incidence of GVHD. Acute GVHD > or = grade III occurred in 0 of 16 BM and two of 12 PBSC recipients; extensive chronic GVHD was observed in four of 15 and three of nine recipients, respectively. To study immature cells in the graft, CD34 subpopulations and cells with long-term repopulating ability, determined using cobble-stone area formation (CAFC assay), were evaluated in each fraction. The separation patterns in BM and PBSC were comparable. Cells with mature and immature phenotype were enriched in lower speed fractions (mean recovery of 74% CD34+/CD13-/DR-). The CAFC week 2, 4 and 6 were also enriched in these fractions. These data show that the used CCE procedure is a reliable method to deplete T cells from stem cell transplants without substantial loss of immature and mature progenitors.  (+info)

Cell surface analysis techniques: What do cell preparation protocols do to cell surface properties? (12/1626)

Cell surface analysis often requires manipulation of cells prior to examination. The most commonly employed procedures are centrifugation at different speeds, changes of media during washing or final resuspension, desiccation (either air drying for contact angle measurements or freeze-drying for sensitive spectroscopic analysis, such as X-ray photoelectron spectroscopy), and contact with hydrocarbon (hydrophobicity assays). The effects of these procedures on electrophoretic mobility, adhesion to solid substrata, affinity to a number of Sepharose columns, structural integrity, and cell viability were systematically investigated for a range of model organisms, including carbon- and nitrogen-limited Psychrobacter sp. strain SW8 (glycocalyx-bearing cells), Escherichia coli (gram-negative cells without a glycocalyx), and Staphylococcus epidermidis (gram-positive cells without a glycocalyx). All of the cell manipulation procedures severely modified the physicochemical properties of cells, but with each procedure some organisms were more susceptible than others. Considerable disruption of cell surfaces occurred when organisms were placed in contact with a hydrocarbon (hexadecane). The majority of cells became nonculturable after air drying and freeze-drying. Centrifugation at a high speed (15,000 x g) modified many cell surface parameters significantly, although cell viability was considerably affected only in E. coli. The type of washing or resuspension medium had a strong influence on the values of cell surface parameters, particularly when high-salt solutions were compared with low-salt buffers. The values for parameters obtained with different methods that allegedly measure similar cell surface properties did not correlate for most cells. These results demonstrate that the methods used to prepare cells for cell surface analysis need to be critically investigated for each microorganism so that the final results obtained reflect the nature of the in situ microbial cell surface as closely as possible. There is an urgent need for new, reliable, nondestructive, minimally manipulative cell surface analysis techniques that can be used in situ.  (+info)

Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. (13/1626)

Mutations in superoxide dismutase 1 (SOD1) polypeptides cause a form of familial amyotrophic lateral sclerosis (FALS). In different kindreds, harboring different mutations, the duration of illness tends to be similar for a given mutation. For example, patients inheriting a substitution of valine for alanine at position four (A4V) average a 1.5 year life expectancy after the onset of symptoms, whereas patients harboring a substitution of arginine for histidine at position 46 (H46R) average an 18 year life expectancy after disease onset. Here, we examine a number of biochemical and biophysical properties of nine different FALS variants of SOD1 polypeptides, including enzymatic activity (which relates indirectly to the affinity of the enzyme for copper), polypeptide half-life, resistance to proteolytic degradation and solubility, in an effort to determine whether a specific property of these enzymes correlates with clinical progression. We find that although all the mutants tested appear to be soluble, the different mutants show a remarkable degree of variation with respect to activity, polypeptide half-life and resistance to proteolysis. However, these variables do not stratify in a manner that correlates with clinical progression. We conclude that the basis for the different life expectancies of patients in different kindreds of sod1-linked FALS may result from an as yet unidentified property of these mutant enzymes.  (+info)

A cell-free assay allows reconstitution of Vps33p-dependent transport to the yeast vacuole/lysosome. (14/1626)

We report a cell-free system that measures transport-coupled maturation of carboxypeptidase Y (CPY). Yeast spheroplasts are lysed by extrusion through polycarbonate filters. After differential centrifugation, a 125,000-g pellet is enriched for radiolabeled proCPY and is used as "donor" membranes. A 15,000-g pellet, harvested from nonradiolabeled cells and enriched for vacuoles, is used as "acceptor" membranes. When these membranes are incubated together with ATP and cytosolic extracts, approximately 50% of the radiolabeled proCPY is processed to mature CPY. Maturation was inhibited by dilution of donor and acceptor membranes during incubation, showed a 15-min lag period, and was temperature sensitive. Efficient proCPY maturation was possible when donor membranes were from a yeast strain deleted for the PEP4 gene (which encodes the principal CPY processing enzyme, proteinase A) and acceptor membranes from a PEP4 yeast strain, indicating intercompartmental transfer. Cytosol made from a yeast strain deleted for the VPS33 gene was less efficient at driving transport. Moreover, antibodies against Vps33p (a Sec1 homologue) and Vam3p (a Q-SNARE) inhibited transport >90%. Cytosolic extracts from yeast cells overexpressing Vps33p restored transport to antibody-inhibited assays. This cell-free system has allowed the demonstration of reconstituted intercompartmental transport coupled to the function of a VPS gene product.  (+info)

cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion. (15/1626)

Myosin binding protein C is a protein of the myosin filaments of striated muscle which is expressed in isoforms specific for cardiac and skeletal muscle. The cardiac isoform is phosphorylated rapidly upon adrenergic stimulation of myocardium by cAMP-dependent protein kinase, and together with the phosphorylation of troponin-I and phospholamban contributes to the positive inotropy that results from adrenergic stimulation of the heart. Cardiac myosin binding protein C is phosphorylated by cAMP-dependent protein kinase on three sites in a myosin binding protein C specific N-terminal domain which binds to myosin-S2. This interaction with myosin close to the motor domain is likely to mediate the regulatory function of the protein. Cardiac myosin binding protein C is a common target gene of familial hypertrophic cardiomyopathy and most mutations encode N-terminal subfragments of myosin binding protein C. The understanding of the signalling interactions of the N-terminal region is therefore important for understanding the pathophysiology of myosin binding protein C associated cardiomyopathy. We demonstrate here by cosedimentation assays and isothermal titration calorimetry that the myosin-S2 binding properties of the myosin binding protein C motif are abolished by cAMP-dependent protein kinase-mediated tris-phosphorylation, decreasing the S2 affinity from a Kd of approximately 5 microM to undetectable levels. We show that the slow and fast skeletal muscle isoforms are no cAMP-dependent protein kinase substrates and that the S2 interaction of these myosin binding protein C isoforms is therefore constitutively on. The regulation of cardiac contractility by myosin binding protein C therefore appears to be a 'brake-off' mechanism that will free a specific subset of myosin heads from sterical constraints imposed by the binding to the myosin binding protein C motif.  (+info)

Saturable stimulation of fatty acid transport through model cytoplasm by soluble binding protein. (16/1626)

To better define the role of soluble binding proteins in the cytoplasmic transport of amphipathic molecules, we measured the diffusional mobility of a fluorescent long-chain fatty acid, 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazol)aminostearate (NBD-stearate), through model cytoplasm as a function of soluble binding protein concentration. Diffusional mobilities were correlated with the partition of the fatty acid between membrane and protein binding sites. Cytoplasm was modeled as a dense suspension of liposomes, and albumin was used as a model binding protein. Albumin saturably increased NBD-stearate mobility through the membrane suspension approximately eightfold. Fatty acid mobility in the absence of albumin was identical to the mobility of the membrane vesicles (1.99 +/- 0.33 x 10(-8) cm(2)/s), whereas the mobility at saturating concentrations was identical to the mobility of albumin (1.65 +/- 0.12 x 10(-7) cm(2)/s). The protein concentration producing half-maximal stimulation of NBD-stearate diffusion (42.8 +/- 0.3 microM) was unexpectedly greater than that required to solubilize half of the NBD-stearate (17.9 +/- 3.0 microM). These results support a proposed mechanism for cytoplasmic transport of small amphipathic molecules in which aqueous diffusion of the protein-bound form of the molecule largely determines the transport rate. However, slow interchange of fatty acid between the binding protein and membranes also appears to influence the transport rate in this model system.  (+info)