Loading...
(1/7983) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis.

Polarized secretion requires proper targeting of secretory vesicles to specific sites on the plasma membrane. Here we report that the exocyst complex plays a key role in vesicle targeting. Sec15p, an exocyst component, can associate with secretory vesicles and interact specifically with the rab GTPase, Sec4p, in its GTP-bound form. A chain of protein-protein interactions leads from Sec4p and Sec15p on the vesicle, through various subunits of the exocyst, to Sec3p, which marks the sites of exocytosis on the plasma membrane. Sec4p may control the assembly of the exocyst. The exocyst may therefore function as a rab effector system for targeted secretion.  (+info)

(2/7983) Studies on a nonpolysomal ribonucleoprotein coding for myosin heavy chains from chick embryonic muscles.

A messenger ribonucleoprotein (mRNP) particle containing the mRNA coding for the myosin heavy chain (MHC mRNA) has been isolated from the postpolysomal fraction of homogenates of 14-day-old chick embryonic muscles. The mRNP sediments in sucrose gradient as 120 S and has a characteristic buoyant density of 1.415 g/cm3, which corresponds to an RNA:protein ratio of 1:3.8. The RNA isolated from the 120 S particle behaved like authentic MHC mRNA purified from chick embryonic muscles with respect to electrophoretic mobility and ability to program the synthesis of myosin heavy chain in a rabbit reticulocyte lysate system as judged by multi-step co-purification of the in vitro products with chick embryonic leg muscle myosin added as carrier. The RNA obtained from the 120 S particle was as effective as purified MHC mRNA in stimulating the synthesis of the complete myosin heavy chains in rabbit reticulocyte lysate under conditions where non-muscle mRNAs had no such effect. Analysis of the protein moieties of the 120 S particle by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows the presence of seven distinct polypeptides with apparent molecular weights of 44,000, 49,000, 53,000, 81,000, 83,000, and 98,000, whereas typical ribosomal proteins are absent. These results indicate that the 120 S particles are distinct cellular entities unrelated to ribosomes or initiation complexes. The presence of muscle-specific mRNAs as cytoplasmic mRNPs suggests that these particles may be involved in translational control during myogenesis in embryonic muscles.  (+info)

(3/7983) Characterization of nuclear structures containing superhelical DNA.

Structures resembling nuclei but depleted of protein may be released by gently lysing cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids sediment in gradients containing intercalating agents in a manner characteristic of DNA that is intact, supercoiled and circular. The concentration of salt present during isolation of human nucleoids affects their protein content. When made in I-95 M NaCl they lack histones and most of the proteins characteristic of chromatin; in 1-0 M NaCl they contain variable amounts of histones. The effects of various treatments on nucleoid integrity were investigated.  (+info)

(4/7983) Isocitrate lyase of Ashbya gossypii--transcriptional regulation and peroxisomal localization.

The isocitrate lyase-encoding gene AgICL1 from the filamentous hemiascomycete Ashbya gossypii was isolated by heterologous complementation of a Saccharomyces cerevisiae icl1d mutant. The open reading frame of 1680 bp encoded a protein of 560 amino acids with a calculated molecular weight of 62584. Disruption of the AgICL1 gene led to complete loss of AgIcl1p activity and inability to grow on oleic acid as sole carbon source. Compartmentation of AgIcl1p in peroxisomes was demonstrated both by Percoll density gradient centrifugation and by immunogold labeling of ultrathin sections using specific antibodies. This fitted with the peroxisomal targeting signal AKL predicted from the C-terminal DNA sequence. Northern blot analysis with mycelium grown on different carbon sources as well as AgICL1 promoter replacement with the constitutive AgTEF promoter revealed a regulation at the transcriptional level. AgICL1 was subject to glucose repression, derepressed by glycerol, partially induced by the C2 compounds ethanol and acetate, and fully induced by soybean oil.  (+info)

(5/7983) Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein.

New isoforms of apolipoprotein (apo)C-I and apoC-III have been detected in delipidated fractions from very low density lipoprotein (VLDL) using matrix-assisted laser desorption (MALDI) and electrospray ionization (ESI) mass spectrometry (MS). The cleavage sites of truncated apoC-III isoforms have also been identified. The VLDL fractions were isolated by fixed-angle single-spin ultracentrifugation using a self-generating sucrose density gradient and delipidated using a newly developed C18 solid phase extraction protocol. Fifteen apoC isoforms and apoE were identified in the MALDI spectra and the existence of the more abundant species was verified by ESI-MS. The relative intensities of the apoCs are closely correlated in three normolipidemic subjects. A fourth subject with type V hyperlipidemia exhibited an elevated apoC-III level and a suppressed level of the newly discovered truncated apoC-I isoform. ApoC-II was found to be particularly sensitive to in vitro oxidation. The dynamic range and specificity of the MALDI assay shows that the complete apoC isoform profile and apoE phenotype can be obtained in a single measurement from the delipidated VLDL fraction.  (+info)

(6/7983) Purification and characterization of rat hippocampal CA3-dendritic spines associated with mossy fiber terminals.

We report a revised and improved isolation procedure for CA3-dendritic spines, most of them still in association with mossy fiber terminals resulting in a 7.5-fold enrichment over nuclei and a 29-fold enrichment over myelin. Additionally, red blood cells, medullated fibers, mitochondria and small synaptosomes were significantly depleted. We show by high resolution electron microscopy that this subcellular fraction contains numerous dendritic spines with a rich ultrastructure, e.g. an intact spine apparatus, membranous organelles, free and membrane-bound polyribosomes, endocytic structures and mitochondria. This improved experimental system will allow us to study aspects of post-synaptic functions at the biochemical and molecular level.  (+info)

(7/7983) Two types of HTLV-1 particles are released from MT-2 cells.

The MT-2 cell line transformed by human T-cell leukemia virus type 1 (HTLV-1) contains one complete provirus and seven defective proviruses. Four defective genomes have an identical structure (LTR-MA-deltaCA-pX-LTR) with an open reading frame that spans from MA to pX, giving rise to a 3.4-kb (24S) RNA transcript encoding a chimeric Gag-pX protein, p28. MT-2 cells release two distinct types of virions. The major "classic" type of particle has a buoyant density of 1.155-1.16 g/cm3 and contains the standard HTLV-I structural proteins and reverse transcriptase (RT). In addition, about 5% of particles are "light," approximately 1.12 g/cm3, and contain p28, RT activity, and the 3.4-kb RNA transcript. RT-PCR and in vitro translation indicate that some of the classic HTLV-1 particles package 3.4-kb RNA as well as full-length 8.5-kb RNA. In addition to matrix features, the p28 protein has a motif resembling a zinc finger at the C-terminal, pX0 region, which may play a role in the assembly of the defective light virions.  (+info)

(8/7983) Subcellular localization of oestrogen-induced uterine peroxidase.

The distribution of oestrogen-induced peroxidase in the resuspended 8000g pellet of rat uterine homogenates was examined by centrifugation in a sucrose density gradient. Within 10h of treatment with oestradiol, peroxidase activity was found in a region devoid of catalase or urate oxidase (peroxisomal markers) which did not overlap the fractions containing succinate dehydrogenase (mitochondrial marker) or acid phosphatase (lysosomal marker). The induced uterine enzyme was localized in reticular membrane-bound vesicles with isopycnic density of 1.28g/ml from which it could be released by treatment with detergent.  (+info)