CNS development: The obscure origins of adult stem cells. (65/6116)

Stem cells of the adult central nervous system are the focus of a great deal of attention because of their potential for making new neural cells. A recent study has claimed to identify their in vivo location, but this important issue remains controversial.  (+info)

Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. (66/6116)

The role of various adhesion molecules in lymphocyte homing to the brain and in inflammatory autoimmune disease of the central nervous system (CNS) was examined in mice. Activated T cell lines and clones expressed CD44 and integrin alpha4, but not L-selectin, and entered the CNS independent of their antigen specificity. mAbs directed against CD44 and integrin alpha4 prevented the transfer of experimental autoimmune encephalomyelitis (EAE) by myelin basic protein-specific T cells. T cells preincubated with anti-CD44 or antiintegrin alpha4 were blocked only partially from entering the brain parenchyma. However, both antibodies efficiently prevented CNS inflammation and clinical expression of EAE when injected in vivo. This effect lasted as long as antibodies were administered. Antibodies specific for L-selectin had no effect on homing of encephalitogenic T cells to the brain or development of EAE. Antiintegrin alpha4 and anti-CD44 did not impair the activation and function of encephalitogenic T cells in vitro and did not deplete integrin alpha4- or CD44-positive cells in vivo. These data suggest that, in the absence of leukocyte recruitment, the entry of a reduced number of activated myelin basic protein-reactive T cells in the CNS is not sufficient for the development and expression of EAE. We propose that antibodies to integrin alpha4 and CD44 prevent clinical disease by partially targeting the primary influx of encephalitogenic T cells and by preventing the secondary influx of leukocytes to lesions initiated by the transferred T cells.  (+info)

CNS origins of the sympathetic nervous system outflow to brown adipose tissue. (67/6116)

Brown adipose tissue (BAT) plays a critical role in cold- and diet-induced thermogenesis. Although BAT is densely innervated by the sympathetic nervous system (SNS), little is known about the central nervous system (CNS) origins of this innervation. The purpose of the present experiment was to determine the neuroanatomic chain of functionally connected neurons from the CNS to BAT. A transneuronal viral tract tracer, Bartha's K strain of the pseudorabies virus (PRV), was injected into the interscapular BAT of Siberian hamsters. The animals were killed 4 and 6 days postinjection, and the infected neurons were visualized by immunocytochemistry. PRV-infected neurons were found in the spinal cord, brain stem, midbrain, and forebrain. The intensity of labeled neurons in the forebrain varied from heavy infections in the medial preoptic area and paraventricular hypothalamic nucleus to few infections in the ventromedial hypothalamic nucleus, with moderate infections in the suprachiasmatic and lateral hypothalamic nuclei. These results define the SNS outflow from the brain to BAT for the first time in any species.  (+info)

Characterization of mouse nNOS2, a natural variant of neuronal nitric-oxide synthase produced in the central nervous system by selective alternative splicing. (68/6116)

Mouse neuronal nitric-oxide synthase 2 (nNOS2) is a unique natural variant of constitutive neuronal nitric-oxide synthase (nNOS) specifically expressed in the central nervous system having a 105-amino acid deletion in the heme-binding domain as a result of in-frame mutation by specific alternative splicing. The mouse nNOS2 cDNA gene was heterologously expressed in Escherichia coli, and the resultant product was characterized spectroscopically in detail. Purified recombinant nNOS2 contained heme but showed no L-arginine- and NADPH-dependent citrulline-forming activity in the presence of Ca2+-promoted calmodulin, elicited a sharp electron paramagnetic resonance (EPR) signal at g = 6.0 indicating the presence of a high spin ferriheme as isolated and showed a peak at around 420 nm in the CO difference spectrum, instead of a 443-nm peak detected with the recombinant wild-type nNOS1 enzyme. Thus, although the heme domain of nNOS2 is capable of binding heme, the heme coordination geometry is highly abnormal in that it probably has a proximal non-cysteine thiolate ligand both in the ferric and ferrous states. Moreover, negligible spectral perturbation of the nNOS2 ferriheme was detected upon addition of either L-arginine or imidazole. These provide a possible rational explanation for the inability of nNOS2 to catalyze the cytochrome P450-type monooxygenase reaction.  (+info)

Poliovirus induces apoptosis in the mouse central nervous system. (69/6116)

Poliovirus (PV) is the etiological agent of human paralytic poliomyelitis. Paralysis results from the destruction of motoneurons, a consequence of PV replication. However, the PV-induced process leading to the death of motoneurons is not well known. We investigated whether PV-induced central nervous system (CNS) injury is associated with apoptosis by using mice as animal models. Transgenic mice expressing the human PV receptor were infected intracerebrally with either the neurovirulent PV-1 Mahoney strain or a paralytogenic dose of the attenuated PV-1 Sabin strain. Nontransgenic mice were infected with a mouse-adapted PV-1 Mahoney mutant. DNA fragmentation was demonstrated in CNS tissue from paralyzed mice by visualization of DNA oligonucleosomal laddering and by enzyme-linked immunosorbent assay. Viral antigens and DNA fragmentation detected by the in situ terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling technique were colocalized in neurons of spinal cords from paralyzed mice. In addition, morphological changes characteristic of cells undergoing apoptosis were observed in motoneurons by electron microscopy. Thus, we show that PV multiplication and CNS injury during paralytic poliomyelitis are associated with apoptosis.  (+info)

The transcriptional activation domain of VP16 is required for efficient infection and establishment of latency by HSV-1 in the murine peripheral and central nervous systems. (70/6116)

The herpes simplex virus (HSV) transactivator VP16 is a structural component of the virion that activates immediate-early viral gene expression. The HSV-1 mutant in1814, which contains a 12-bp insertion that compromises the transcriptional function of VP16, replicated to a low level if at all in the trigeminal ganglia of mice (I. Steiner, J. G. Spivack, S. L. Deshmane, C. I. Ace, C. M. Preston, and N. W. Fraser (1990). J. Virol. 64, 1630-1638; Valyi-Nagy et al., unpublished data). However, in1814 did establish a latent infection in the ganglia after corneal inoculation from which it could be reactivated. In this study, several HSV-1 strains were constructed with deletions in the VP16 transcriptional activation domain. These viruses were viable in cell culture, although some were significantly reduced in their ability to initiate infection. A deletion mutant completely lacking the activation domain of VP16 (RP5) was unable to replicate to any detectable level or to efficiently establish latent infections in the peripheral and central nervous systems of immunocompetent mice. However, similar to in1814, RP5 formed a slowly progressing persistent infection in immunocompromised nude mice. Thus RP5 is severely neuroattenuated in the murine model of HSV infection. However, the activation domain of VP16 is not essential for replication in the nervous system, since we observed a slow progressive infection persisting in the absence of an immune response.  (+info)

Induction of filopodia by direct local elevation of intracellular calcium ion concentration. (71/6116)

In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is isolated from earlier steps in intracellular signaling pathways, can initiate filopodial protrusion. We raised [Ca2+]i level transiently in small areas of nascent axons near growth cones in situ by localized photolysis of caged Ca2+ compounds. After photolysis, [Ca2+]i increased from approximately 60 nM to approximately 1 microM within the illuminated zone, and then returned to resting level in approximately 10-15 s. New filopodia arose in this area within 1-5 min, and persisted for approximately 15 min. Elevation of calcium concentration within a single filopodium induced new branch filopodia. In neurons coinjected with rhodamine-phalloidin, F-actin was observed in dynamic cortical patches along nascent axons; after photolysis, new filopodia often emerged from these patches. These results indicate that local transient [Ca2+]i elevation is sufficient to induce new filopodia from nascent axons or from existing filopodia.  (+info)

RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. (72/6116)

The products of the Polycomb group (PcG) of genes are necessary for the maintenance of transcriptional repression of a number of important developmental genes, including the homeotic genes. A two-hybrid screen was used to search for putative new members of the PcG of genes in mammals. We have identified a new Zn finger protein, RYBP, which interacts directly with both Ring1 proteins (Ring1A and Ring1B) and with M33, two mutually interacting sets of proteins of the mammalian Polycomb complex. Ring1 binds RYBP and M33 through the same C-terminal domain, whereas the RYBP-M33 interaction takes place through an M33 domain not involved in Ring1 binding. RYBP also interacts directly with YY1, a transcription factor partially related to the product of the Drosophila pleiohomeotic gene. In addition, we show here that RYBP acts as a transcriptional repressor in transiently transfected cells. Finally, RYBP shows a dynamic expression pattern during embryogenesis which initially overlaps partially that of Ring1A in the central nervous system, and later becomes ubiquitous. Taken together, these data suggest that RYBP may play a relevant role in PcG function in mammals.  (+info)