Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. (9/189)

Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  (+info)

Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. (10/189)

The application of nucleic acid amplification methods to the detection of food-borne pathogens could be facilitated by concentrating the organisms from the food matrix before detection. This study evaluated the utility of metal hydroxide immobilization for the concentration of bacterial cells from dairy foods prior to detection by cultural and molecular methods. Using reconstituted nonfat dry milk (NFDM) as a model, two food-borne pathogens (Listeria monocytogenes and Salmonella enterica serovar Enteritidis) were concentrated from 25-ml samples by the sequential steps of clarification and high-speed centrifugation (designated primary concentration) and immobilization with zirconium hydroxide and low-speed centrifugation (designated secondary concentration). Sample volume reduction after immobilization with zirconium hydroxide was 50-fold, with total bacterial recoveries ranging from 78 to 96% of input for serovar Enteritidis and 65 to 96% of input for L. monocytogenes. Immobilized bacteria remained viable and could be enumerated by standard cultural procedures. When followed by RNA extraction and subsequent detection by reverse transcription (RT)-PCR, detection limits of 10(1) to 10(2) CFU/25 ml of reconstituted NFDM were achieved for both organisms. The bacterial-immobilization step was relatively nonspecific, resulting in recovery of >50% of the input cells when evaluated on a panel of representative bacterial strains of significance to foods. The method could be adapted to more complex dairy products, such as whole milk and ice cream, for which bacterial recoveries after immobilization ranged from 64 to >100%, with subsequent RT-PCR detection limits of >/=10(2) CFU/ml for whole milk and >/=10(1) CFU for ice cream for both serovar Enteritidis and L. monocytogenes. The bacterial-immobilization method is easy, rapid, and inexpensive and may have applications for the concentration of a wide variety of food-borne bacteria prior to detection by both conventional and alternative methods.  (+info)

Simultaneous direct counting of total and specific microbial cells in seawater, using a deep-sea microbe as target. (11/189)

To rapidly and accurately enumerate total and specific microbes in aquatic samples, fluorescent in situ hybridization was combined with direct counting via direct immobilization of cells on a polymer-coated Nuclepore filter. The technique, named FISH-DC, achieved almost complete recovery of total cells and reproducibility of Psychrobacter pacificensis cells of deep-sea origin (error, +info)

Simultaneous immunofluorescent detection of coentrapped cells in gel beads. (12/189)

An immunofluorescent method involving double color labeling and confocal microscopy was reported to specifically detect lactic acid bacteria and probiotic cells coimmobilized in gels beads. The method described is rapid (4 h) and sensitive and may be useful for studying cell dynamics during mixed-culture starter production using immobilized cells in gel beads. Microscopic observations were perfectly correlated to cell counts obtained using a sandwich enzyme-linked immunosorbent assay.  (+info)

Real-time measurements of the interaction between single cells of Listeria monocytogenes and nisin on a solid surface. (13/189)

A method to obtain real-time measurements of the interactions between nisin and single cells of Listeria monocytogenes on a solid surface was developed. This method was based on fluorescence ratio-imaging microscopy and measurements of changes in the intracellular pH (pH(i)) of carboxyfluorescein succinimidyl ester-stained cells during exposure to nisin. Immobilized cells were placed in a chamber mounted on a microscope and attached to a high-precision peristaltic pump which allowed rapid changes in the nisin concentration. In the absence of nisin, the pH(i) of L. monocytogenes was almost constant (approximately pH 8.0) and independent of the external pH in the pH range from 5.0 to 9.0. In the presence of nisin, dissipation of the pH gradient (DeltapH) was observed, and this dissipation was both time and nisin concentration dependent. The dissipation of DeltapH resulted in cell death, as determined by the number of CFU. In the model system which we used the immobilized cells were significantly more resistant to nisin than the planktonic cells. The kinetics of DeltapH dissipation for single cells revealed a variable lag phase depending on the nisin concentration, which was followed by a very rapid decrease in pH(i) within 1 to 2 min. The differences in nisin sensitivity between single cells in a L. monocytogenes population were insignificant for cells grown to the stationary phase in a liquid laboratory substrate, but differences were observed for cells grown on an agar medium under similar conditions, which resulted in some cells having increased resistance to nisin.  (+info)

Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells. (14/189)

Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Calpha), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.  (+info)

Selection of peptides targeting the human sperm surface using random peptide phage display identify ligands homologous to ZP3. (15/189)

Analysis of the surface architecture of human spermatozoa is a necessary step in the development of new approaches to contraception and resolving the causes of human infertility. In this study we have utilized phage display technology to identify peptides that bind with high affinity to the surface of human spermatozoa. Fifteen- and twelve-mer random peptide phage display libraries were screened against paraformaldehyde-fixed spermatozoa and a number of sperm-binding peptides were identified. One peptide, M6, displayed a high level of affinity for the sperm surface and showed sequence homology with a dominant human ZP3 epitope (hZP 25-33). This peptide bound preferentially to the equatorial and post acrosomal domains of the sperm head and exhibited contraceptive activity by virtue of its capacity to impair the fusion of acrosome-reacted spermatozoa with the vitelline membrane of the oocyte. A similar form of contraceptive activity was also observed within an unrelated peptide, K6, derived from screening the 12-mer library. These results indicate that phage display technology is a powerful tool for developing reagents capable of targeting the human sperm surface, providing insights into the composition of this structure and the identity of targets susceptible to contraceptive attack and pathological disruption.  (+info)

Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. (16/189)

Cell-cell interactions mediated by Notch and its ligands are known to effect many cell fate decisions in both invertebrates and vertebrates. However, the mechanisms involved in ligand induced Notch activation are unknown. Recently it was shown that, in at least some cases, endocytosis of the extracellular domain of Notch and ligand by the signaling cell is required for signal induction in the receptive cell. These results imply that soluble ligands (ligand extracellular domains) although capable of binding Notch would be unlikely to activate it. To test the potential activity of soluble Notch ligands, we generated monomeric and dimeric forms of the Notch ligand Delta-1 by fusing the extracellular domain to either a series of myc epitopes (Delta-1(ext-myc)) or to the Fc portion of human IgG-1 (Delta-1(ext-IgG)), respectively. Notch activation, assayed by inhibition of differentiation in C2 myoblasts and by HES1 transactivation in U20S cells, occurred when either Delta-1(ext-myc) or Delta-1(ext-IgG) were first immobilized on the plastic surface. However, Notch was not activated by either monomeric or dimeric ligand in solution (non-immobilized). Furthermore, both non-immobilized Delta-1(ext-myc) and Delta-1(ext-IgG) blocked the effect of immobilized Delta. These results indicate that Delta-1 extracellular domain must be immobilized to induce Notch activation in C2 or U20S cells and that non-immobilized Delta-1 extracellular domain is inhibitory to Notch function. These results imply that ligand stabilization may be essential for Notch activation.  (+info)