Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers.
(49/155046)
A fluorimetric multi-parameter cell sensor at the single cell level is presented which makes it possible to observe the physiological behavior of different cell lines, different physiological parameters, and statistical data at the same time. Different cell types were immobilized at predefined positions with high accuracy using optical tweezers and adhesion promoting surface layers. The process is applicable to both adherent and non-adherent cells. Coating of the immobilization area with mussel adhesive protein was shown to be essential for the process. Intracellular proton and calcium concentrations in different cell classes were simultaneously imaged and the specific activation of T lymphocytes was demonstrated. This method should be especially useful for drug screening due to the small sample volume and high information density. (+info)
Proliferation and differentiation of rat theca-interstitial cells: comparison of effects induced by platelet-derived growth factor and insulin-like growth factor-I.
(50/155046)
This study was designed to evaluate mechanisms regulating proliferation of steroidogenically active and steroidogenically inactive theca-interstitial (T-I) cells, and, specifically, to evaluate the effects of platelet-derived growth factor (PDGF) and insulin-like growth factor-I (IGF-I). T-I cells obtained from immature Sprague-Dawley rats were cultured in chemically defined media. Proliferation was assayed by thymidine incorporation and cell counting. Steroidogenically active cells were identified by the presence of 3beta-hydroxysteroid dehydrogenase activity. Flow cytometry facilitated separation of dividing cells (in S and G2/M phases of the cell cycle) from nondividing cells (in G0 and G1 phases of the cell cycle). PDGF alone (0.1-1 nM) produced a dose-dependent increase in DNA synthesis by up to 136%. IGF-I alone (10 nM) increased DNA synthesis by 56%. In the presence of both IGF-I (10 nM) and PDGF (0.1-1 nM), DNA synthesis increased by 108-214%. PDGF (1 nM) increased the total number of T-I cells by 43%; this effect was due to an increase in the number of steroidogenically inactive cells (47%). In contrast, the stimulatory effect of IGF-I (10 nM) was predominantly due to an increase in the number of steroidogenically active cells (163%). Separation of dividing cells from nondividing cells was accomplished with the aid of flow cytometry. In the absence of growth factors, the proportion of steroidogenically active cells was 35% lower among proliferating than resting cells. PDGF (1 nM) decreased the proportion of steroidogenically active cells among both proliferating and resting cells (by 43% and 16%, respectively). In contrast, IGF-I (10 nM) increased the proportion of steroidogenically active cells among proliferating cells by 56%. These findings indicate that differentiated/steroidogenically active cells divide; furthermore, PDGF and IGF-I may selectively stimulate proliferation of individual subpopulations of T-I cells, thereby providing a mechanism for development of structural and steroidogenically active components of the T-I compartment. (+info)
Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells.
(51/155046)
To examine hormonal regulation of genes pertinent to luteal steroidogenesis, bovine theca and granulosa cells derived from preovulatory follicles were cultured with various combinations of forskolin and insulin. On Day 8 of culture, progesterone production was measured, and mRNA levels of steroidogenic factor-1 (SF-1), cytochrome P450 side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein (StAR) were determined by means of semiquantitative reverse transcription-polymerase chain reaction. Notably, the combination of forskolin plus insulin stimulated progesterone production in luteinized theca cells. This was probably a result of a synergistic interaction between forskolin and insulin, observed on both StAR and P450scc mRNA levels. However, in luteinized granulosa cells (LGC), forskolin and insulin each independently were able to up-regulate the levels of P450scc and StAR mRNA levels, respectively. Moreover, insulin alone was sufficient to maintain the high steady-state levels of StAR mRNA in LGC. Both insulin and insulin-like growth factor I enhanced StAR gene expression in LGC. SF-1 was constitutively expressed in bovine luteal cells; its amounts did not vary between the two luteal cell types or with hormonal treatments. In summary, this study demonstrates a distinct, cell-type specific regulation of StAR and P450scc mRNA in the two bovine luteal cell types. (+info)
Down-regulation of oxytocin-induced cyclooxygenase-2 and prostaglandin F synthase expression by interferon-tau in bovine endometrial cells.
(52/155046)
Oxytocin (OT) is responsible for the episodic release of luteolytic prostaglandin (PG) F2alpha from the uterus in ruminants. The attenuation of OT-stimulated uterine PGF2alpha secretion by interferon-tau (IFN-tau) is essential for prevention of luteolysis during pregnancy in cows. To better understand the mechanisms involved, the effect of recombinant bovine IFN-tau (rbIFN-tau) on OT-induced PG production and cyclooxygenase-2 (COX-2) and PGF synthase (PGFS) expression in cultured endometrial epithelial cells was investigated. Cells were obtained from cows at Days 1-3 of the estrous cycle and cultured to confluence in RPMI medium supplemented with 5% steroid-free fetal calf serum. The cells were then incubated in the presence or absence of either 100 ng/ml OT or OT+100 ng/ml rbIFN-tau for 3, 6, 12, and 24 h. OT significantly increased PGF2alpha and PGE2 secretion at all time points (p < 0.01), while rbIFN-tau inhibited the OT-induced PG production and reduced OT receptor binding in a time-dependent manner. OT increased the steady-state level of COX-2 mRNA, measured by Northern blot, which was maximal at 3 h (9-fold increase) and then decreased with time (p < 0.01). OT also caused an increase in COX-2 protein, which peaked at 12 h (11-fold increase), as measured by Western blot. Addition of rbIFN-tau suppressed the induction of COX-2 mRNA (89%, p < 0.01) and COX-2 protein (50%, p < 0.01) by OT. OT also increased PGFS mRNA, and this stimulation was attenuated by rbIFN-tau (p < 0.01). To ensure that the decrease in COX-2 was not solely due to down-regulation of the OT receptor, cells were stimulated with a phorbol ester (phorbol 12-myristate 13-acetate; PMA) in the presence and absence of rbIFN-tau. The results showed that rbIFN-tau also decreased PMA-stimulated PG production and COX-2 protein. It can be concluded that rbIFN-tau inhibition of OT-stimulated PG production is due to down-regulation of OT receptor, COX-2, and PGFS. (+info)
Involvement of polyomavirus enhancer activator 3 in the regulation of expression of gamma-glutamyl transpeptidase messenger ribonucleic acid-IV in the rat epididymis.
(53/155046)
Gamma-glutamyl transpeptidase (GGT) mRNA-IV and polyomavirus enhancer activator 3 (PEA3) mRNA are highly expressed in the initial segment of the rat epididymis, and both are regulated by testicular factors. PEA3 protein in rat initial segment nuclear extracts has been shown to bind to a PEA3/Ets binding motif, which is derived from the partially characterized GGT mRNA-IV promoter region. This suggests that PEA3 may be involved in regulating transcription from the rat GGT mRNA-IV gene promoter in the initial segment. Using DNA oligonucleotide primers and DNA sequencing analysis, an approximately 1500-basepair (bp) DNA sequence at the 5' region of the promoter was obtained. Using transient transfection, PEA3 activated transcription of the rat GGT mRNA-IV promoter only in cultured epididymal cells from the rat initial segment, but not in Cos-1 or NRK-52E cells. Promoter deletion analysis indicated that a PEA3/Ets binding motif between nucleotides -22 and -17 is the functional site for PEA3 to activate transcription of GGT promoter IV and that an adjacent Sp1 binding motif is also required to maintain promoter IV activity in epididymal cells. Transcriptional activation of promoter IV was shown to be epididymal cell-specific and PEA3-specific. In addition, PEA3 may act as a weak repressor for transcription of promoter IV, probably using a PEA3/Ets binding motif(s) distal to the transcription start site. A model of how PEA3 is involved in the regulation of transcription of GGT promoter IV in epididymal cells is proposed. (+info)
Luteinizing hormone inhibits conversion of pregnenolone to progesterone in luteal cells from rats on day 19 of pregnancy.
(54/155046)
We have previously reported that intrabursal ovarian administration of LH at the end of pregnancy in rats induces a decrease in luteal progesterone (P4) synthesis and an increase in P4 metabolism. However, whether this local luteolytic effect of LH is exerted directly on luteal cells or on other structures, such as follicular or stromal cells, to modify luteal function is unknown. The aim of the present study was to determine the effect of LH on isolated luteal cells obtained on Day 19 of pregnancy. Incubation of luteal cells with 1, 10, 100, or 1000 ng/ml of ovine LH (oLH) for 6 h did not modify basal P4 production. The addition to the culture medium of 22(R)-hydroxycholesterol (22R-HC, 10 microgram/ml), a membrane-permeable P4 precursor, or pregnenolone (10(-2) microM) induced a significant increase in P4 accumulation in the medium in relation to the control value. When luteal cells were preincubated for 2 h with oLH, a significant (p < 0.01) reduction in the 22R-HC- or pregnenolone-stimulated P4 accumulation was observed. Incubation of luteal cells with dibutyryl cAMP (1 mM, a cAMP analogue) plus isobutylmethylxanthine (1 mM, a phosphodiesterase inhibitor) also inhibited pregnenolone-stimulated P4 accumulation. Incubation with an inositol triphosphate synthesis inhibitor, neomycin (1 mM), or an inhibitor of intracellular Ca2+ mobilization, (8,9-N, N-diethylamino)octyl-3,4,5-trimethoxybenzoate (1 mM), did not prevent the decrease in pregnenolone-stimulated P4 secretion induced by oLH. It was concluded that the luteolytic action of LH in late pregnancy is due, at least in part, to a direct action on the luteal cells and that an increase in intracellular cAMP level might mediate this effect. (+info)
Requirement of FADD for tumor necrosis factor-induced activation of acid sphingomyelinase.
(55/155046)
The generation of mice strains deficient for select members of the signaling complex of the 55-kDa tumor necrosis factor receptor (TNF-R55) has allowed the assignment of specific cellular responses to distinct TNF-R55-associated proteins. In particular, the TNF-R55-associated protein FADD seems to be responsible for recruitment and subsequent activation of caspase 8. In this report we demonstrate the requirement of FADD for TNF-induced activation of endosomal acid sphingomyelinase (A-SMase). In primary embryonic fibroblasts from FADD-deficient mice the activation of A-SMase by TNF-R55 ligation was almost completely impaired. This effect is specific in that other TNF responses like activation of NF-kappaB or neutral (N-)SMase remained unaffected. In addition, interleukin-1-induced activation of A-SMase in FADD-deficient cells was unaltered. In FADD-/- embryonic fibroblasts reconstituted by transfection with a FADD cDNA expression construct, the TNF responsiveness of A-SMase was restored. The results of this study suggest that FADD, in addition to its role in triggering a proapoptotic caspase cascade, is required for TNF-induced activation of A-SMase. (+info)
Tissue factor pathway inhibitor-2 is a novel mitogen for vascular smooth muscle cells.
(56/155046)
A mitogen for growth-arrested cultured bovine aortic smooth muscle cells was purified to homogeneity from the supernatant of cultured human umbilical vein endothelial cells by heparin affinity chromatography and reverse-phase high performance liquid chromatography. This mitogen was revealed to be tissue factor pathway inhibitor-2 (TFPI-2), which is a Kunitz-type serine protease inhibitor. TFPI-2 was expressed in baby hamster kidney cells using a mammalian expression vector. Recombinant TFPI-2 (rTFPI-2) stimulated DNA synthesis and cell proliferation in a dose-dependent manner (1-500 nM). rTFPI-2 activated mitogen-activated protein kinase (MAPK) activity and stimulated early proto-oncogene c-fos mRNA expression in smooth muscle cells. MAPK, c-fos expression and the mitogenic activity were inhibited by a specific inhibitor of MAPK kinase, PD098059. Thus, the mitogenic function of rTFPI-2 is considered to be mediated through MAPK pathway. TFPI has been reported to exhibit antiproliferative action after vascular smooth muscle injury in addition to the ability to inhibit activation of the extrinsic coagulation cascade. However, structurally similar TFPI-2 was found to have a mitogenic activity for the smooth muscle cell. (+info)