Modulation of estrogen action in the rat pituitary and mammary glands by dietary energy consumption. (33/37565)

We are investigating the mechanisms through which estrogens induce development of prolactin (PRL)-producing pituitary tumors and mammary carcinomas in rats and how these mechanisms are affected by dietary energy consumption. The hypothesis under examination is that dietary energy restriction inhibits tumorigenesis in estrogen-responsive tissues by altering cellular responsiveness to estrogenic hormones. In the Fischer 344 (F344) rat strain, a 40% restriction of energy consumption virtually abolishes development of estrogen-induced pituitary tumors. Inhibition of pituitary tumorigenesis in the F344 strain by energy restriction results from modulation of estrogen regulation of cell survival, not cell proliferation. In contrast, energy restriction has no inhibitory effect on estrogen-induced pituitary tumor development in the ACI rat strain. However, energy restriction markedly inhibits induction of mammary carcinomas in female ACI rats treated with 17beta-estradiol. Data presented herein indicate that dietary energy restriction modulates the responsiveness of specific cell populations to estrogenic hormones and thereby inhibits estrogen-induced tumorigenesis in a manner specific to both rat strain and tissue.  (+info)

Telomere shortening in mTR-/- embryos is associated with failure to close the neural tube. (34/37565)

Mice genetically deficient for the telomerase RNA (mTR) can be propagated for only a limited number of generations. In particular, mTR-/- mice of a mixed C57BL6/129Sv genetic background are infertile at the sixth generation and show serious hematopoietic defects. Here, we show that a percentage of mTR-/- embryos do not develop normally and fail to close the neural tube, preferentially at the forebrain and midbrain. The penetrance of this defect increases with the generation number, with 30% of the mTR-/- embryos from the fifth generation showing the phenotype. Moreover, mTR-/- kindreds in a pure C57BL6 background are only viable up to the fourth generation and also show defects in the closing of the neural tube. Cells derived from mTR-/- embryos that fail to close the neural tube have significantly shorter telomeres and decreased viability than their mTR-/- littermates with a closed neural tube, suggesting that the neural tube defect is a consequence of the loss of telomere function. The fact that the main defect detected in mTR-/- embryos is in the closing of the neural tube, suggests that this developmental process is among the most sensitive to telomere loss and chromosomal instability.  (+info)

Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. (35/37565)

The insulin-like growth factor-1 (IGF-1)/receptor tyrosine kinase recently has been shown to mediate neuronal survival and potentiate the activity of specific calcium channel subtypes; survival requires Akt, a serine/threonine kinase. We demonstrate here that Akt mediates the IGF-1-induced potentiation of L channel currents, but not that of N channels. Transient expression of wild-type, dominant-negative, and constitutively active forms of Akt in cerebellar granule neurons causes, respectively, no change in IGF-1/L channel potentiation, complete inhibition of potentiation, and a dramatic increase in basal L currents accompanied by the loss of ability to induce further increases. In no case is the IGF-1 potentiation of N currents affected. We additionally find that IGF-1 partially mediates granule neuron survival via L channel activity and that Akt-dependent L channel modulation is a necessary component. Interestingly, very brief exposure (1 min) to IGF-1 triggers nearly complete survival and requires L channel activity. These results strongly suggest that neuronal receptor tyrosine kinases can control long-term calcium-dependent processes via the rapid control of voltage-sensitive channels.  (+info)

A role for insulin-like growth factor-I in the regulation of Schwann cell survival. (36/37565)

During postnatal development in the peripheral nerve, differentiating Schwann cells are susceptible to apoptotic death. Schwann cell apoptosis is regulated by axons and serves as one mechanism through which axon and Schwann cell numbers are correctly matched. This regulation is mediated in part by the provision of limiting axon-derived trophic molecules, although neuregulin-1 (NRG-1) is the only trophic factor shown to date to support Schwann cell survival. In this report, we identify insulin-like growth factor-I (IGF-I) as an additional trophin that can promote Schwann cell survival in vitro. We find that IGF-I, like NRG-1, can prevent the apoptotic death of postnatal rat Schwann cells cultured under conditions of serum withdrawal. Moreover, we show that differentiating Schwann cells in the rat sciatic nerve express both the IGF-I receptor (IGF-I R) and IGF-I throughout postnatal development. These results indicate that IGF-I is likely to control Schwann cell viability in the developing peripheral nerve and, together with other findings, raise the interesting possibility that such survival regulation may switch during postnatal development from an axon-dependent mechanism to an autocrine and/or paracrine one.  (+info)

BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. (37/37565)

Brain-derived neurotrophic factor (BDNF) supports survival of 50% of visceral afferent neurons in the nodose/petrosal sensory ganglion complex (NPG; Ernfors et al., 1994a; Jones et al., 1994; Conover et al., 1995; Liu et al., 1995; Erickson et al., 1996), including arterial chemoafferents that innervate the carotid body and are required for development of normal breathing (Erickson et al., 1996). However, the relationship between BDNF dependence of visceral afferents and the location and timing of BDNF expression in visceral tissues is unknown. The present study demonstrates that BDNF mRNA and protein are transiently expressed in NPG targets in the fetal cardiac outflow tract, including baroreceptor regions in the aortic arch, carotid sinus, and right subclavian artery, as well as in the carotid body. The period of BDNF expression corresponds to the onset of sensory innervation and to the time at which fetal NPG neurons are BDNF-dependent in vitro. Moreover, baroreceptor innervation is absent in newborn mice lacking BDNF. In addition to vascular targets, vascular afferents themselves express high levels of BDNF, both during and after the time they are BDNF-dependent. However, endogenous BDNF supports survival of fetal NPG neurons in vitro only under depolarizing conditions. Together, these data indicate two roles for BDNF during vascular afferent pathway development; initially, as a target-derived survival factor, and subsequently, as a signaling molecule produced by the afferents themselves. Furthermore, the fact that BDNF is required for survival of functionally distinct populations of vascular afferents demonstrates that trophic requirements of NPG neurons are not modality-specific but may instead be associated with innervation of particular organ systems.  (+info)

Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. (38/37565)

Although recent studies have provided evidence for hair cell regeneration in mammalian inner ears, the mechanism underlying this regenerative process is still under debate. Here we report immunocytochemical, histological, electron microscopic, and autoradiographic evidence that, in cultured postnatal rat utricles, a substantial number of hair cells can survive gentamicin insult even their stereocilia are lost. These partially damaged hair cells can survive for a prolonged time and regrow the stereocilia. Although the number of stereocilia-bearing hair cells increases over time after gentamicin insult, hair cell and supporting cell numbers remain essentially unchanged. Tritiated thymidine autoradiography and bromodeoxyuridine immunocytochemistry of the cultures demonstrate that cell proliferation in the sensory epithelium is very limited and is far below the number of recovered hair cells. Furthermore, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling analysis indicates that gentamicin-induced apoptosis in the sensory epithelium occurs mainly during a 2 d treatment period, and additional cell death is minimal 2-11 d after treatment. Considered together, intracellular repair of partially damaged hair cells can be an important contributor to spontaneous hair cell recovery in mammalian inner ears.  (+info)

Morphological variations in transplanted tumors developed by inoculation of spontaneous mesothelioma cell lines derived from F344 rats. (39/37565)

Morphological and immunohistochemical features of the abdominal mesotheliomas that were developed by inoculation of 3 cell lines (MeET-4, -5 and -6) established from spontaneous abdominal mesotheliomas in male F344 rats. Although the original tumors of three cell lines showed signs of epithelioid growth with a predominantly simple papillary pattern, transplanted tumors revealed a variety of morphologic features including epithelioid with glandular structures, sarcomatous, and a mixture of these components. All tumor cells of transplanted tumors were positive for alpha-smooth muscle actin (ASMA) but almost negative for desmin as were epithelioid cells of the original tumors, and the cell lines were positive for desmin but not for ASMA. These results suggested that mesothelioma in the F344 rat had the potential for wide spectrum differentiation under in vitro conditions. The microenvironmental factors obtained in vivo can modify their potential ability and their morphological aspects. These factors may be related to tumor cell reexpression of ASMA of tumor cells that were masked under in vitro culture conditions.  (+info)

Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. (40/37565)

PURPOSE: The aim of this study was to investigate the action of benzalkonium chloride (BAC), used as a preservative in most ophthalmic topical solutions, on epithelial conjunctival cells in vitro. METHODS: A continuous human conjunctival cell line (Wong-Kilbourne derivative of Chang conjunctiva) was exposed to BAC solutions at various concentrations (0.1%-0.0001%) during a period of 10 minutes. Cells were examined before treatment and 3, 24, 48, and 72 hours later, after reexposure to normal cell culture conditions. Cell number and viability were assessed with crystal violet and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide colorimetric assays. The expression of the apoptotic marker Apo 2.7, nuclear antigen p53, membrane proteins Fas and Fas ligand, and DNA content was studied by flow cytometry. Morphologic aspects of cell nuclei were analyzed on slides with a nucleic acid-specific dye, 4',6'-diamidino-2-phenylindole dihydrochloride. Cytoskeleton was labeled with a monoclonal anti-pancytokeratin antibody. In addition, apoptosis was measured by DNA electrophoresis assays in agarose gel. RESULTS: Cell exposure to 0.1% and 0.05% BAC induced cell lysis immediately after treatment. All cells (100%) treated with 0.01% BAC died in a delayed manner within 24 hours, with most of the characteristics of apoptosis (chromatin condensation and DNA fragmentation, reduction in cell volume, expression of the apoptotic marker Apo 2.7, and apoptotic changes in DNA content). Aliquots of 0.005%, 0.001%, 0.0005%, and 0.0001% BAC induced growth arrest and apoptotic cell death in a dose-dependent manner between 24 and 72 hours after treatment. The expressions of Fas and p53 did not vary after BAC treatment. Fas ligand was always negative. CONCLUSIONS: These results suggest that BAC induces cell growth arrest and death at a concentration as low as 0.0001%. The mode of BAC-induced cell death is dose-dependent. Cells die by necrosis after BAC treatment at high concentrations and by apoptosis if low concentrations of BAC are applied. This new aspect of in vitro toxicity of BAC could in part explain some ocular surface disorders observed in patients undergoing long-term topical treatments with preservative-containing drugs.  (+info)