The role of hypoxia inducible factor 1alpha in cobalt chloride induced cell death in mouse embryonic fibroblasts. (65/2848)

Cobalt has been widely used in the treatment of anemia and as a hypoxia mimic in cell culture and it is known to activate hypoxic signaling by stabilizing the hypoxia inducible transcription factor 1alpha (HIF1alpha). However, cobalt exposure can lead to tissue and cellular toxicity. These studies were conducted to determine the role of HIF1alpha in mediating cobalt-induced toxicity. Mouse embryonic fibroblasts (MEFs) that were null for the HIF1alpha protein were used to show that HIF1alpha protein plays a major role in mediating cobalt-induced cytotoxicity. Previous work from our lab and others has shown that two BH3 domain containing cell death genes, BNip3 and NIX, are targets of hypoxia signaling. These experiments document that BNip3 and NIX expression is HIF1alpha-dependent, and cobalt induces their expression in a time and dose dependent manner. In addition, their expression is correlated with an increase in BNIP3 and NIX protein. Characteristically, the elevated level of BNIP3 was correlated with an increased presence of chromatin condensation, one marker for cell injury. Interestingly, this increased chromosomal condensation was not coupled to caspase-3 activation as usually seen in a typical apoptotic response. These results show that HIF1alpha is playing a major role in mediating cobalt-induced toxicity in mouse embryonic fibroblasts and may offer a possible mechanism for the underlying pathology of injuries seen in workers exposed to environmental contaminants that can influence the hypoxia signaling system, such as cobalt.  (+info)

Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. (66/2848)

To extend our knowledge of host-cell targets of Helicobacter pylori, we characterized the interaction between H. pylori and human T84 epithelial cell polarized monolayers. Transcriptional analysis by use of human microarrays and a panel of isogenic H. pylori mutants revealed distinct responses to infection. Of the 670 genes whose expression changed, most (92%) required the cag pathogenicity island (PAI). Although altered expression of many genes was dependent on CagA (80% of the PAI-dependent genes), expression of >30% of these host genes occurred independent of the phosphorylation state of the CagA protein. Similarly, we found that injected CagA localized to the apical surface of cells and showed preferential accumulation at the apical junctions in a phosphorylation-independent manner. These data suggest the presence of distinct functional domains within the CagA protein that play essential roles in protein targeting and alteration of host-cell signaling pathways.  (+info)

Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin. (67/2848)

Single-layered epithelia are the first differentiated cell types to develop in the embryo, with columnar and squamous types appearing immediately after blastocyst implantation. Here, we show that mouse embryonic stem cells seeded on hensin or laminin, but not fibronectin or collagen type IV, formed hemispheric epithelial structures whose outermost layer terminally differentiated to an epithelium that resembled the visceral endoderm. Hensin induced columnar epithelia, whereas laminin formed squamous epithelia. At the egg cylinder stage, the distal visceral endoderm is columnar, and these cells begin to migrate anteriorly to create the anterior visceral endoderm, which assumes a squamous shape. Hensin expression coincided with the dynamic appearance and disappearance of columnar cells at the egg cylinder stage of the embryo. These expression patterns, and the fact that hensin null embryos (and those already reported for laminin) die at the onset of egg cylinder formation, support the view that hensin and laminin are required for terminal differentiation of columnar and squamous epithelial phenotypes during early embryogenesis.  (+info)

2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. (68/2848)

Delta9-Tetrahydrocannabinol, a major psychoactive constituent of marijuana, interacts with specific receptors, i.e. the cannabinoid receptors, thereby eliciting a variety of pharmacological responses. To date, two types of cannabinoid receptors have been identified: the CB1 receptor, which is abundantly expressed in the nervous system, and the CB2 receptor, which is predominantly expressed in the immune system. Previously, we investigated in detail the structure-activity relationship of various cannabinoid receptor ligands and found that 2-AG (2-arachidonoylglycerol) is the most efficacious agonist. We have proposed that 2-AG is the true natural ligand for both the CB1 and CB2 receptors. Despite the potential physiological importance of 2-AG, not much information is available concerning its biological activities towards mammalian tissues and cells. In the present study, we examined the effect of 2-AG on morphology as well as the actin filament system in differentiated HL-60 cells, which express the CB2 receptor. We found that 2-AG induces rapid morphological changes such as the extension of pseudopods. We also found that it provokes a rapid actin polymerization in these cells. Actin polymerization induced by 2-AG was abolished when cells were treated with SR144528, a CB2 receptor antagonist, and pertussis toxin, suggesting that the response was mediated by the CB2 receptor and G(i/o). A phosphoinositide 3-kinase, Rho family small G-proteins and a tyrosine kinase were also suggested to be involved. Reorganization of the actin filament system is known to be indispensable for a variety of cellular events; it is possible that 2-AG plays physiologically essential roles in various inflammatory cells and immune-competent cells by inducing a rapid actin rearrangement.  (+info)

Role of T-type calcium current in identified D-hair mechanoreceptor neurons studied in vitro. (69/2848)

Different subsets of dorsal root ganglion (DRG) mechanoreceptors transduce low- and high-intensity mechanical stimuli. It was shown recently that, in vivo, neurotrophin-4 (NT-4)-dependent D-hair mechanoreceptors specifically express a voltage-activated T-type calcium channel (Ca(v)3.2) that may be required for their mechanoreceptive function. Here we show that D-hair mechanoreceptors can be identified in vitro by a rosette-like morphology in the presence of NT-4 and that these rosette neurons are almost all absent in DRG cultures taken from NT-4 knock-out mice. In vitro identification of the D-hair mechanoreceptor allowed us to explore the electrophysiological properties of these cells. We demonstrate that the T-type Ca(v)3.2 channel induced slow membrane depolarization that contributes to lower the voltage threshold for action potential generation and controls spike latency after stimulation of D-hair mechanoreceptors. Indeed, the properties of the T-type amplifier are particularly well suited to explain the high sensitivity of D-hair mechanoreceptors to slowly moving stimuli.  (+info)

Cks1 is dispensable for survival in Saccharomyces cerevisiae. (70/2848)

Cks1 is a small, evolutionarily conserved protein that was identified due to its genetic interaction with the Cdc28 cyclin-dependent kinase. In S. cerevisieae, Cks1 has long been regarded as a protein essential for cell survival. Here, we describe the derivation of viable cks1 null cells. cks1 null cells are slow growing and exhibit a variety of phenotypes consistent with functions previously described for cks1 temperature-sensitive mutants. In addition, we uncovered additional phenotypes (including a meiotic defect, sensitivity to high salt and inositol auxotrophy), all of which are defects associated with mutations in genes involved in general transcription pathways.  (+info)

Muscle reconstitution by muscle satellite cell descendants with stem cell-like properties. (71/2848)

Recent studies have demonstrated that a distinct subpopulation with stem cell-like characteristics in myoblast culture is responsible for new muscle fiber formation after intramuscular transplantation. The identification and isolation of stem-like cells would have significant implications for successful myogenic cell transfer therapy in human muscle disorders. Using a clonal culture system for mouse muscle satellite cells, we have identified two cell types, designated 'round cells' and 'thick cells', in clones derived from single muscle satellite cells that have been taken from either slow or fast muscle. Clonal analysis of satellite cells revealed that the round cells are immediate descendants of quiescent satellite cells in adult muscle. In single-myofiber culture, round cells first formed colonies and then generated progeny, thick cells, that underwent both myogenic and osteogenic terminal differentiation under the appropriate culture conditions. Thick cells, but not round cells, responded to terminal differentiation-inducing signals. Round cells express Pax7, a specific marker of satellite cells, at high levels. Myogenic cell transfer experiments showed that round cells reconstitute myofibers more efficiently than thick cells. Furthermore, round cells restored dystrophin in myofibers of mdx nude mice, even when as few as 5000 cells were transferred into the gastrocnemius muscle. These results suggest that round cells are satellite-cell descendants with stem cell-like characteristics and represent a useful source of donor cells to improve muscle regeneration.  (+info)

Rac regulation of chemotaxis and morphogenesis in Dictyostelium. (72/2848)

Chemotaxis requires localized F-actin polymerization at the site of the plasma membrane closest to the chemoattractant source, a process controlled by Rac/Cdc42 GTPases. We identify Dictyostelium RacB as an essential mediator of this process. RacB is activated upon chemoattractant stimulation, exhibiting biphasic kinetics paralleling F-actin polymerization. racB null cells have strong chemotaxis and morphogenesis defects and a severely reduced chemoattractant-mediated F-actin polymerization and PAKc activation. RacB activation is partly controlled by the PI3K pathway. pi3k1/2 null cells and wild-type cells treated with LY294002 exhibit a significantly reduced second peak of RacB activation, which is linked to pseudopod extension, whereas a PTEN hypomorph exhibits elevated RacB activation. We identify a RacGEF, RacGEF1, which has specificity for RacB in vitro. racgef1 null cells exhibit reduced RacB activation and cells expressing mutant RacGEF1 proteins display chemotaxis and morphogenesis defects. RacGEF1 localizes to sites of F-actin polymerization. Inhibition of this localization reduces RacB activation, suggesting a feedback loop from RacB via F-actin polymerization to RacGEF1. Our findings provide a critical linkage between chemoattractant stimulation, F-actin polymerization, and chemotaxis in Dictyostelium.  (+info)