Loading...
(1/32044) Nonbehavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability.

The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the ;high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (;extreme' pawns) to nearly wild-type reversal behavior (;partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kunget al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A-B, A-C, B-C), identified in the exautogamous progeny of crosses between ;partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (;partial' pawn) parents.---Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation.  (+info)

(2/32044) Polarized distribution of Bcr-Abl in migrating myeloid cells and co-localization of Bcr-Abl and its target proteins.

Bcr-Abl plays a critical role in the pathogenesis of Philadelphia chromosome-positive leukemia. Although a large number of substrates and interacting proteins of Bcr-Abl have been identified, it remains unclear whether Bcr-Abl assembles multi-protein complexes and if it does where these complexes are within cells. We have investigated the localization of Bcr-Abl in 32D myeloid cells attached to the extracellular matrix. We have found that Bcr-Abl displays a polarized distribution, colocalizing with a subset of filamentous actin at trailing portions of migrating 32D cells, and localizes on the cortical F-actin and on vesicle-like structures in resting 32D cells. Deletion of the actin binding domain of Bcr-Abl (Bcr-AbI-AD) dramatically enhances the localization of Bcr-Abl on the vesicle-like structures. These distinct localization patterns of Bcr-Abl and Bcr-Abl-AD enabled us to examine the localization of Bcr-Abl substrate and interacting proteins in relation to Bcr-Abl. We found that a subset of biochemically defined target proteins of Bcr-Abl redistributed and co-localized with Bcr-Abl on F-actin and on vesicle-like structures. The co-localization of signaling proteins with Bcr-Abl at its sites of localization supports the idea that Bcr-Abl forms a multi-protein signaling complex, while the polarized distribution and vesicle-like localization of Bcr-Abl may play a role in leukemogenesis.  (+info)

(3/32044) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells.

PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  (+info)

(4/32044) Transduction of glioma cells using a high-titer retroviral vector system and their subsequent migration in brain tumors.

The intracranial migration of transduced glioma cells was investigated in order to improve the treatment of malignant glioma by gene therapy using retroviral vectors. In this study, about half the volume of the tumor mass could be transduced in 14 days after only a single implantation of 3 x 10(5) retrovirus-producing cells into a tumor mass with a diameter of 5 mm. Moreover, we were able to follow the migration of glioma cells transduced by the lacZ-harboring retroviruses originating from the high-titer retrovirus-producing cells. Besides the importance of using a high-titer retroviral vector system, our results also indicate that the implantation site of the virus-producing cells and the interval between the implantation of the virus-producing cells and the subsequent administration of ganciclovir are important factors for the efficient killing of glioma cells.  (+info)

(5/32044) Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness.

ICAM-2-deficient mice exhibit prolonged accumulation of eosinophils in lung interstitium concomitant with a delayed increase in eosinophil numbers in the airway lumen during the development of allergic lung inflammation. The ICAM-2-dependent increased and prolonged accumulation of eosinophils in lung interstitium results in prolonged, heightened airway hyperresponsiveness. These findings reveal an essential role for ICAM-2 in the development of the inflammatory and respiratory components of allergic lung disease. This phenotype is caused by the lack of ICAM-2 expression on non-hematopoietic cells. ICAM-2 deficiency on endothelial cells causes reduced eosinophil transmigration in vitro. ICAM-2 is not essential for lymphocyte homing or the development of leukocytes, with the exception of megakaryocyte progenitors, which are significantly reduced.  (+info)

(6/32044) Anti-monocyte chemoattractant protein-1/monocyte chemotactic and activating factor antibody inhibits neointimal hyperplasia in injured rat carotid arteries.

Monocyte chemoattractant protein-1 (MCP-1)/monocyte chemotactic and activating factor (MCAF) has been suggested to promote atherogenesis. The effects of in vivo neutralization of MCP-1 in a rat model were examined in an effort to clarify the role of MCP-1 in the development of neointimal hyperplasia. Competitive polymerase chain reaction analysis revealed maximum MCP-1 mRNA expression at 4 hours after carotid arterial injury. Increased immunoreactivities of MCP-1 were also detected at 2 and 8 hours after injury. Either anti-MCP-1 antibody or nonimmunized goat IgG (10 mg/kg) was then administered every 12 hours to rats that had undergone carotid arterial injury. Treatment with 3 consecutive doses of anti-MCP-1 antibody within 24 hours (experiment 1) and every 12 hours for 5 days (experiment 2) significantly inhibited neointimal hyperplasia at day 14, resulting in a 27.8% reduction of the mean intima/media ratio (P<0.05) in experiment 1 and a 43.6% reduction (P<0.01) in experiment 2. This effect was still apparent at day 56 (55.6% inhibition; P<0.05). The number of vascular smooth muscle cells in the neointima at day 4 was significantly reduced by anti-MCP-1 treatment, demonstrating the important role of MCP-1 in early neointimal lesion formation. However, recombinant MCP-1 did not stimulate chemotaxis of vascular smooth muscle cells in an in vitro migration assay. These results suggest that MCP-1 promotes neointimal hyperplasia in early neointimal lesion formation and that neutralization of MCP-1 before, and immediately after, arterial injury may be effective in preventing restenosis after angioplasty. Further studies are needed to clarify the mechanism underlying the promotion of neointimal hyperplasia by MCP-1.  (+info)

(7/32044) Non-serum-dependent chemotactic factors produced by Candida albicans stimulate chemotaxis by binding to the formyl peptide receptor on neutrophils and to an unknown receptor on macrophages.

Serum-free culture filtrates of six Candida species and Saccharomyces cerevisiae were found to contain chemoattractants for human polymorphonuclear leukocytes (PMNs) and a mouse macrophage-like cell line, J774. The chemotactic factors differed for the PMN and J774 cells, however, in terms of heat stability, kinetics of liberation by the yeast cells, and divalent cation requirements for production. The chemoattractant in Candida albicans culture filtrates appeared to act through the formyl peptide receptor (FPR) of PMNs, since it was found to induce chemotaxis of Chinese hamster ovary (CHO) cells that were expressing the human FPR but did not induce chemotaxis of wild-type CHO cells. The C. albicans culture filtrates also induced migration of PMNs across confluent monolayers of a human gastrointestinal epithelial cell line, T84; migration occurred in the basolateral-to-apical direction but not the reverse direction, unless the epithelial tight junctions were disrupted. J774 cells did not migrate toward the formylated peptide (fMet-Leu-Phe; fMLF), and chemotaxis toward the C. albicans culture filtrate was not inhibited by an FPR antagonist (t-butoxycarbonyl-Met-Leu-Phe), suggesting that a different receptor mediated J774 cell chemotaxis. In conclusion, we have identified a receptor by which a non-serum-dependent chemotactic factor (NSCF) produced by C. albicans induced chemotaxis of PMNs. Additionally, we have shown that NSCF was active across epithelial monolayers. These findings suggest that NSCFs produced by C. albicans and other yeast species may influence host-pathogen interactions at the gastrointestinal tract mucosal surface by inducing phagocytic-cell infiltration.  (+info)

(8/32044) Role of the extracellular signal-regulated protein kinase cascade in human neutrophil killing of Staphylococcus aureus and Candida albicans and in migration.

Killing of Staphylococcus aureus and Candida albicans by neutrophils involves adherence of the microorganisms, phagocytosis, and a collaborative action of oxygen reactive species and components of the granules. While a number of intracellular signalling pathways have been proposed to regulate neutrophil responses, the extent to which each pathway contributes to the killing of S. aureus and C. albicans has not been clearly defined. We have therefore examined the effect of blocking one such pathway, the extracellular signal-regulated protein kinase (ERK) cascade, using the specific inhibitor of the mitogen-activated protein kinase/ERK kinase, PD98059, on the ability of human neutrophils to kill S. aureus and C. albicans. Our data demonstrate the presence of ERK2 and a 43-kDa form of ERK but not ERK1 in human neutrophils. Upon stimulation with formyl methionyl leucyl phenylalanine (fMLP), the activities of both ERK2 and the 43-kDa form were stimulated. Despite abrogating the activity of both ERK forms, PD98059 only slightly reduced the ability of neutrophils to kill S. aureus or C. albicans. This is consistent with our finding that PD98059 had no effect on neutrophil adherence or degranulation, although pretreatment of neutrophils with PD98059 inhibited fMLP-stimulated superoxide production by 50%, suggesting that a change in superoxide production per se is not strictly correlated with microbicidal activity. However, fMLP-stimulated chemokinesis was markedly inhibited, while random migration and fMLP-stimulated chemotaxis were partially inhibited, by PD98059. These data demonstrate, for the first time, that the ERK cascade plays only a minor role in the microbicidal activity of neutrophils and that the ERK cascade is involved primarily in regulating neutrophil migration in response to fMLP.  (+info)