Cubic membranes: a legend beyond the Flatland* of cell membrane organization. (41/160)

Cubic membranes represent highly curved, three-dimensional nanoperiodic structures that correspond to mathematically well defined triply periodic minimal surfaces. Although they have been observed in numerous cell types and under different conditions, particularly in stressed, diseased, or virally infected cells, knowledge about the formation and function of nonlamellar, cubic structures in biological systems is scarce, and research so far is restricted to the descriptive level. We show that the "organized smooth endoplasmic reticulum" (OSER; Snapp, E.L., R.S. Hegde, M. Francolini, F. Lombardo, S. Colombo, E. Pedrazzini, N. Borgese, and J. Lippincott-Schwartz. 2003. J. Cell Biol. 163:257-269), which is formed in response to elevated levels of specific membrane-resident proteins, is actually the two-dimensional representation of two subtypes of cubic membrane morphology. Controlled OSER induction may thus provide, for the first time, a valuable tool to study cubic membrane formation and function at the molecular level.  (+info)

Apical targeting of syntaxin 3 is essential for epithelial cell polarity. (42/160)

In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on the known structure of syntaxin 1 revealed that these residues are exposed on the surface of a three-helix bundle. Syntaxin 3 targeting does not require binding to Munc18b. Instead, syntaxin 3 recruits Munc18b to the plasma membrane. Expression of mislocalized mutant syntaxin 3 in Madin-Darby canine kidney cells leads to basolateral mistargeting of apical membrane proteins, disturbance of tight junction formation, and loss of ability to form an organized polarized epithelium. These results indicate that SNARE proteins contribute to the overall specificity of membrane trafficking in vivo, and that the polarity of syntaxin 3 is essential for epithelial cell polarization.  (+info)

Microclusters of inhibitory killer immunoglobulin-like receptor signaling at natural killer cell immunological synapses. (43/160)

We report the supramolecular organization of killer Ig-like receptor (KIR) phosphorylation using a technique applicable to imaging phosphorylation of any green fluorescent protein-tagged receptor at an intercellular contact or immune synapse. Specifically, we use fluorescence lifetime imaging (FLIM) to report Forster resonance energy transfer (FRET) between GFP-tagged KIR2DL1 and a Cy3-tagged generic anti-phosphotyrosine monoclonal antibody. Visualization of KIR phosphorylation in natural killer (NK) cells contacting target cells expressing cognate major histocompatibility complex class I proteins revealed that inhibitory signaling is spatially restricted to the immune synapse. This explains how NK cells respond appropriately when simultaneously surveying susceptible and resistant target cells. More surprising, phosphorylated KIR was confined to microclusters within the aggregate of KIR, contrary to an expected homogeneous distribution of KIR signaling across the immune synapse. Also, yellow fluorescent protein-tagged Lck, a kinase important for KIR phosphorylation, accumulated in a multifocal distribution at inhibitory synapses. Spatial confinement of receptor phosphorylation within the immune synapse may be critical to how activating and inhibitory signals are integrated in NK cells.  (+info)

Characteristics of thiamine uptake by the BeWo human trophoblast cell line. (44/160)

Little is known concerning the mechanisms responsible for the transplacental transfer of thiamine. So, the aim of this work was to characterize the placental uptake of thiamine from the maternal circulation, by determining the characteristics of 3H-thiamine uptake by a human trophoblast cell line (BeWo). Uptake of (3)H-thiamine (50-100 nM) by BeWo cells was: 1) temperature-dependent and energy-independent; 2) pH-dependent (uptake increased as the extracellular medium pH decreased); 3) Na(+)-dependent and Cl(-)-independent; 4) not inhibited by the thiamine structural analogs amprolium, oxythiamine and thiamine pyrophosphate; 5) inhibited by the unrelated organic cations guanidine, N-methylnicotinamide, tetraethylammonium, clonidine and cimetidine; 6) inhibited by the organic cation serotonin, and by two selective inhibitors of the serotonin plasmalemmal transporter (hSERT), fluoxetine and desipramine. We conclude that (3)H-thiamine uptake by BeWo cells seems to occur through a process distinct from thiamine transporter-1 (hThTr-1) and thiamine transporter-2 (hThTr-2). Rather, it seems to involve hSERT. Moreover, chronic (48 h) exposure of cells to caffeine (1 microM) stimulated and chronic exposure to xanthohumol and iso-xanthohumol (1 and 0.1 microM, respectively) inhibited (3)H-thiamine uptake, these effects being not mediated through modulation of the expression levels of either hThTr-1 or hSERT mRNA.  (+info)

Clathrin-dependent association of CVAK104 with endosomes and the trans-Golgi network. (45/160)

CVAK104 is a novel coated vesicle-associated protein with a serine/threonine kinase homology domain that was recently shown to phosphorylate the beta2-subunit of the adaptor protein (AP) complex AP2 in vitro. Here, we demonstrate that a C-terminal segment of CVAK104 interacts with the N-terminal domain of clathrin and with the alpha-appendage of AP2. CVAK104 localizes predominantly to the perinuclear region of HeLa and COS-7 cells, but it is also present on peripheral vesicular structures that are accessible to endocytosed transferrin. The distribution of CVAK104 overlaps extensively with that of AP1, AP3, the mannose 6-phosphate receptor, and clathrin but not at all with its putative phosphorylation target AP2. RNA interference-mediated clathrin knockdown reduced the membrane association of CVAK104. Recruitment of CVAK104 to perinuclear membranes of permeabilized cells is enhanced by guanosine 5'-O-(3-thio)triphosphate, and brefeldin A redistributes CVAK104 in cells. Both observations suggest a direct or indirect requirement for GTP-binding proteins in the membrane association of CVAK104. Live-cell imaging showed colocalization of green fluorescent protein-CVAK104 with endocytosed transferrin and with red fluorescent protein-clathrin on rapidly moving endosomes. Like AP1-depleted COS-7 cells, CVAK104-depleted cells missort the lysosomal hydrolase cathepsin D. Together, our data suggest a function for CVAK104 in clathrin-dependent pathways between the trans-Golgi network and the endosomal system.  (+info)

A new interaction between Abi-1 and betaPIX involved in PDGF-activated actin cytoskeleton reorganisation. (46/160)

Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Rac1 stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)-1 and betaPIX, a guanine nucleotide exchange factor for Rac1, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and betaPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of betaPIX interacted with Abi-1, while in vivo the N-terminal fragment of betaPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and betaPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of betaPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and betaPIX is involved in the formation of growth factor-induced membrane dorsal ruffles.  (+info)

Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. (47/160)

Rho GTPases (Rac, Rho, and Cdc42) play important roles in regulating cell function through their ability to coordinate the actin cytoskeleton, modulate the formation of signaling reactive oxidant species, and control gene transcription. Activation of Rho GTPase signaling pathways requires the regulated release of Rho GTPases from RhoGDI complexes, followed by their reuptake after membrane cycling. We show here that Src kinase binds and phosphorylates RhoGDI both in vitro and in vivo at Tyr156. Analysis of Rho GTPase-RhoGDI complexes using in vitro assays of complexation and in vivo by coimmunoprecipitation analysis indicates that Src-mediated phosphorylation of Tyr156 causes a dramatic decrease in the ability of RhoGDI to form a complex with RhoA, Rac1, or Cdc42. Phosphomimetic mutation of Tyr156-->Glu results in the constitutive association of RhoGDI(Y156E) with the plasma membrane and/or associated cortical actin. Substantial cortical localization of tyrosine-phosphorylated RhoGDI is also observed in fibroblasts expressing active Src, where it is most evident in podosomes and regions of membrane ruffling. Expression of membrane-localized RhoGDI(Y156E) mutant is associated with enhanced cell spreading and membrane ruffling. These results suggest that Src-mediated RhoGDI phosphorylation is a novel physiological mechanism for regulating Rho GTPase cytosol membrane-cycling and activity.  (+info)

PV-1 labels trans-cellular openings in mouse endothelial cells and is negatively regulated by VEGF. (48/160)

The PV-1 protein is endogenously expressed from a single mRNA in the mouse pancreatic MS-1 endothelial cell line as a 60-kDa N-glycosylated and 50-kDa non-glycosylated protein that form DTT sensitive oligomers. In the absence of cell permeabilization, PV-1 antibodies label transcellular openings of variable size, many that penetrate through the cytosol with circular openings on the free and attached surface of the plasma membrane. Intracellular PV-1 is localized in perinuclear aggregates that can extend as a fibrous network through the cytosol and often surround the nuclear compartment. In some cells, PV-1 is organized as a large unipolar spindle-like structure that is often associated with severe deformation of the nucleus. The VEGF-R2 inhibitor SU5614 increased the PV-1 protein levels in a dose-dependent manner and inhibited MS-1 cell growth, without inducing apoptosis. This report provides compelling evidence for a functional role of PV-1 in the formation of large transendothelial channels and modulation of nuclear shape. Moreover, these data suggest the PV-1 protein is negatively regulated by VEGF.  (+info)