Loading...
(1/8163) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB.

To maintain the integrity of the vascular barrier, endothelial cells (EC) are resistant to cell death. The molecular basis of this resistance may be explained by the function of antiapoptotic genes such as bcl family members. Overexpression of Bcl-2 or Bcl-XL protects EC from tumor necrosis factor (TNF)-mediated apoptosis. In addition, Bcl-2 or Bcl-XL inhibits activation of NF-kappaB and thus upregulation of proinflammatory genes. Bcl-2-mediated inhibition of NF-kappaB in EC occurs upstream of IkappaBalpha degradation without affecting p65-mediated transactivation. Overexpression of bcl genes in EC does not affect other transcription factors. Using deletion mutants of Bcl-2, the NF-kappaB inhibitory function of Bcl-2 was mapped to bcl homology domains BH2 and BH4, whereas all BH domains were required for the antiapoptotic function. These data suggest that Bcl-2 and Bcl-XL belong to a cytoprotective response that counteracts proapoptotic and proinflammatory insults and restores the physiological anti-inflammatory phenotype to the EC. By inhibiting NF-kappaB without sensitizing the cells (as with IkappaBalpha) to TNF-mediated apoptosis, Bcl-2 and Bcl-XL are prime candidates for genetic engineering of EC in pathological conditions where EC loss and unfettered activation are undesirable.  (+info)

(2/8163) Human topoisomerase I promotes initiation of simian virus 40 DNA replication in vitro.

Addition of purified human topoisomerase I (topo I) to simian virus 40 T antigen-driven in vitro DNA replication reactions performed with topo I-deficient extracts results in a greater than 10-fold stimulation of completed molecules as well as a more than 3-fold enhancement of overall DNA replication. To further characterize this stimulation, we first demonstrate that bovine topo I but not Escherichia coli topo I can also enhance DNA replication. By using several human topo I mutants, we show that a catalytically active form of topo I is required. To delineate whether topo I influences the initiation or the elongation step of replication, we performed delayed pulse, pulse-chase, and delayed pulse-chase experiments. The results illustrate that topo I cannot promote the completion of partially replicated molecules but is needed from the beginning of the reaction to initiate replication. Competitive inhibition experiments with the topo I binding T antigen fragment 1-246T and a catalytically inactive topo I mutant suggest that part of topo I's stimulation of replication is mediated through a direct interaction with T antigen. Collectively, our data indicate that topo I enhances the synthesis of fully replicated DNA molecules by forming essential interactions with T antigen and stimulating initiation.  (+info)

(3/8163) Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors.

The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in vitro, only p16(INK4a) can form stable, binary complexes with both CDK4 and CDK6 in proliferating cells. The other INK4 family members form stable complexes with CDK6 but associate only transiently with CDK4. Conversely, CDK4 stably associates with both p21(CIP1) and p27(KIP1) in cyclin-containing complexes, suggesting that CDK4 is in equilibrium between INK4 and p21(CIP1)- or p27(KIP1)-bound states. In agreement with this hypothesis, overexpression of p21(CIP1) in 293 cells, where CDK4 is bound to p16(INK4a), stimulates the formation of ternary cyclin D-CDK4-p21(CIP1) complexes. These data suggest that members of the p21 family of proteins promote the association of D-type cyclins with CDKs by counteracting the effects of INK4 molecules.  (+info)

(4/8163) The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase.

Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.  (+info)

(5/8163) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB.

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)

(6/8163) Telomerase activity is sufficient to allow transformed cells to escape from crisis.

The introduction of simian virus 40 large T antigen (SVLT) into human primary cells enables them to proliferate beyond their normal replicative life span. In most cases, this temporary escape from senescence eventually ends in a second proliferative block known as "crisis," during which the cells cease growing or die. Rare immortalization events in which cells escape crisis are frequently correlated with the presence of telomerase activity. We tested the hypothesis that telomerase activation is the critical step in the immortalization process by studying the effects of telomerase activity in two mortal SVLT-Rasval12-transformed human pancreatic cell lines, TRM-6 and betalox5. The telomerase catalytic subunit, hTRT, was introduced into late-passage cells via retroviral gene transfer. Telomerase activity was successfully induced in infected cells, as demonstrated by a telomerase repeat amplification protocol assay. In each of nine independent infections, telomerase-positive cells formed rapidly dividing cell lines while control cells entered crisis. Telomere lengths initially increased, but telomeres were then maintained at their new lengths for at least 20 population doublings. These results demonstrate that telomerase activity is sufficient to enable transformed cells to escape crisis and that telomere elongation in these cells occurs in a tightly regulated manner.  (+info)

(7/8163) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo.

Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA 5' cap and brings the mRNA into a complex with other protein synthesis initiation factors and ribosomes. The activity of mammalian eIF4E is important for the translation of capped mRNAs and is thought to be regulated by two mechanisms. First, eIF4E is sequestered by binding proteins, such as 4EBP1, in quiescent cells. Mitogens induce the release of eIF4E by stimulating the phosphorylation of 4EBP1. Second, mitogens and stresses induce the phosphorylation of eIF4E at Ser 209, increasing the affinity of eIF4E for capped mRNA and for an associated scaffolding protein, eIF4G. We previously showed that a mitogen- and stress-activated kinase, Mnk1, phosphorylates eIF4E in vitro at the physiological site. Here we show that Mnk1 regulates eIF4E phosphorylation in vivo. Mnk1 binds directly to eIF4G and copurifies with eIF4G and eIF4E. We identified activating phosphorylation sites in Mnk1 and developed dominant-negative and activated mutants. Expression of dominant-negative Mnk1 reduces mitogen-induced eIF4E phosphorylation, while expression of activated Mnk1 increases basal eIF4E phosphorylation. Activated mutant Mnk1 also induces extensive phosphorylation of eIF4E in cells overexpressing 4EBP1. This suggests that phosphorylation of eIF4E is catalyzed by Mnk1 or a very similar kinase in cells and is independent of other mitogenic signals that release eIF4E from 4EBP1.  (+info)

(8/8163) The significance of tetramerization in promoter recruitment by Stat5.

Stat5a and Stat5b are rapidly activated by a wide range of cytokines and growth factors, including interleukin-2 (IL-2). We have previously shown that these signal transducers and activators of transcription (STAT proteins) are key regulatory proteins that bind to two tandem gamma interferon-activated site (GAS) motifs within an IL-2 response element (positive regulatory region III [PRRIII]) in the human IL-2Ralpha promoter. In this study, we demonstrate cooperative binding of Stat5 to PRRIII and explore the molecular basis underlying this cooperativity. We demonstrate that formation of a tetrameric Stat5 complex is essential for the IL-2-inducible activation of PRRIII. Stable tetramer formation of Stat5 is mediated through protein-protein interactions involving a tryptophan residue conserved in all STATs and a lysine residue in the Stat5 N-terminal domain (N domain). The functional importance of tetramer formation is shown by the decreased levels of transcriptional activation associated with mutations in these residues. Moreover, the requirement for STAT protein-protein interactions for gene activation from a promoter with tandemly linked GAS motifs can be relieved by strengthening the avidity of protein-DNA interactions for the individual binding sites. Taken together, these studies demonstrate that a dimeric but tetramerization-deficient Stat5 protein can activate only a subset of target sites. For functional activity on a wider range of potential recognition sites, N-domain-mediated oligomerization is essential.  (+info)