Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. (25/1728)

EBNA3C can specifically repress the expression of reporter plasmids containing EBV Cp latency-associated promoter elements. Cp is normally the main promoter for EBNA mRNA initiation, so it appears that EBNA3C contributes to a negative autoregulatory control loop. By mutational analysis it was previously established that this repression is consistent with EBNA3C being targeted to Cp by binding the cellular sequence-specific DNA-binding protein CBF1 (also known as recombination signal-binding protein [RBP]-Jkappa. Further analysis suggested that in vivo a corepressor interacts with EBNA3C in this DNA binding complex. Results presented here are all consistent with a component of such a corepressor exhibiting histone deacetylase activity. The drug trichostatin A, which specifically inhibits histone deacetylases, relieved two- to threefold the repression of Cp induced by EBNA3C in two different cell types. Moreover, repression of pTK-CAT-Cp4x by EBNA3C was specifically enhanced by cotransfection of an expression plasmid for human histone deacetylase-1 (HDAC1). Consistent with these functional assays, in vitro-translated HDAC1 bound to a glutathione S-transferase (GST) fusion protein including full-length EBNA3C, and in the reciprocal experiment EBNA3C bound to a GST fusion with the N terminus of HDAC1. Coimmunoprecipitations also revealed an EBNA3C-HDAC1 interaction in vivo, and GST-EBNA3C bound functional histone deacetylase enzyme activity from HeLa cell nuclear extracts. The region of EBNA3C involved in the interaction with HDAC1 appears to correspond to the region which is necessary for binding to CBF1/RBP-Jkappa. A direct physical interaction between EBNA3C and HDAC1 was demonstrated with recombinant proteins purified from bacterial cells, and we therefore conclude that HDAC1 and CBF1/RBP-Jkappa bind to the same or adjacent regions of EBNA3C. These data suggest that recruitment of histone deacetylase activity makes a significant contribution to the repression of transcription from Cp because EBNA3C bridges an interaction between CBF1/RBP-Jkappa and HDAC1.  (+info)

Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. (26/1728)

Xeroderma pigmentosum variant (XP-V) represents one of the most common forms of this cancer-prone DNA repair syndrome. Unlike classical XP cells, XP-V cells are normal in nucleotide excision repair but defective in post-replication repair. The precise molecular defect in XP-V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin-based plasmid to detect XP-V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP-V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer-containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co-sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP-V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di-thymine lesion.  (+info)

Activation of RNA polymerase III transcription in cells transformed by simian virus 40. (27/1728)

RNA polymerase (Pol) III transcription is abnormally active in fibroblasts that have been transformed by simian virus 40 (SV40). This report presents evidence that two separate components of the general Pol III transcription apparatus, TFIIIB and TFIIIC2, are deregulated following SV40 transformation. TFIIIC2 subunits are expressed at abnormally high levels in SV40-transformed cells, an effect which is observed at both protein and mRNA levels. In untransformed fibroblasts, TFIIIB is subject to repression through association with the retinoblastoma protein RB. The interaction between RB and TFIIIB is compromised following SV40 transformation. Furthermore, the large T antigen of SV40 is shown to relieve repression by RB. The E7 oncoprotein of human papillomavirus can also activate Pol III transcription, an effect that is dependent on its ability to bind to RB. The data provide evidence that both TFIIIB and TFIIIC2 are targets for activation by DNA tumor viruses.  (+info)

The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. (28/1728)

The 26S proteasome degrades proteins targeted by the ubiquitin pathway, a function thought to explain its role in cellular processes. The proteasome interacts with the ubiquitin-like N terminus of Rad23, a nucleotide excision repair (NER) protein, in Saccharomyces cerevisiae. Deletion of the ubiquitin-like domain causes UV radiation sensitivity. Here, we show that the ubiquitin-like domain of Rad23 is required for optimal activity of an in vitro NER system. Inhibition of proteasomal ATPases diminishes NER activity in vitro and increases UV sensitivity in vivo. Surprisingly, blockage of protein degradation by the proteasome has no effect on the efficiency of NER. This establishes that the regulatory complex of the proteasome has a function independent of protein degradation.  (+info)

Decreased availability of GDP-L-fucose in a patient with LAD II with normal GDP-D-mannose dehydratase and FX protein activities. (29/1728)

Leukocyte adhesion deficiency type II (LAD II) is caused by a disorder in the metabolism of GDP-L-fucose, which causes hypofucosylation of glycoconjugates. This study analyzes a newly identified LAD II patient who shows the same severe hypofucosylation of glycoconjugates as the other described patients. However, in vitro assays of cytosolic extracts from leukocytes and fibroblasts of the patient demonstrated a normal GDP-L-fucose biosynthesis from GDP-D-mannose. Analysis of the two enzymes involved in the pathway, GDP-D-mannose 4,6-dehydratase and FX protein, revealed normal numbers of transcripts without any detectable mutations within the coding regions of either gene. In contrast to previously published observations [Sturla et al. (1998) FEBS Lett. 429, 274-278], the major pathway of GDP-L-fucose synthesis can be normal in LAD II.  (+info)

SR proteins are required for nematode trans-splicing in vitro. (30/1728)

SR (ser/arg) proteins have been shown to play roles in numerous aspects of pre-mRNA splicing, including modulation of alternative splicing, commitment of substrates to the splicing pathway, and splice site communication. The last of these, splice site communication, is particularly relevant to trans-splicing in which the 5' and 3' exons originate on separate molecules. The participation of SR proteins in naturally occurring, spliced leader RNA-dependent transsplicing has not been examined. Here, we have isolated SR proteins from an organism that performs both trans- and cis-splicing, the nematode Ascaris lumbricoides. To examine their activity in in vitro splicing reactions, we have also developed and characterized an SR protein-depleted whole-cell extract. When tested in this extract, the nematode SR proteins are required for both trans- and cis-splicing. In addition, the state of phosphorylation of the nematode SR proteins is critical to their activity in vitro. Interestingly, mammalian (HeLa) and A. lumbricoides SR proteins exhibit equivalent activities in cis-splicing, while the nematode SR proteins are much more active in trans-splicing. Thus, it appears that SR proteins purified from an organism that naturally trans-splices its pre-mRNAs promote this reaction to a greater extent than do their mammalian counterparts.  (+info)

Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. (31/1728)

The effects of Streptococcus thermophilus on ceramide levels either in vitro on cultured human keratinocytes or in vivo on stratum corneum, have been investigated. In vitro, Streptococcus thermophilus enhanced the levels of ceramides in keratinocytes in a time-dependent way. The presence of high levels of neutral, glutathione-sensitive, sphingomyelinase in Streptococcus thermophilus could be responsible for the observed ceramide increase. The application of a base cream containing sonicated Streptococcus thermophilus in the forearm skin of 17 healthy volunteers for 7 d also led to a significant and relevant increase of skin ceramide amounts, which could be due to the sphingomyelin hydrolysis through bacterial neutral sphingomyelinase. Indeed, similar results were obtained with a base cream containing purified bacterial neutral sphingomyelinase. In addition, the inhibition of bacterial neutral sphingomyelinase activity through glutathione blocked the skin ceramide increase observed after the treatment. The topical application of a sonicated Streptococcus thermophilus preparation, leading to increased stratum corneum ceramide levels, could thus result in the improvement of lipid barrier and a more effective resistance against xerosis.  (+info)

Induction of apoptosis in purified animal and plant nuclei by Xenopus egg extracts. (32/1728)

We have developed a cell-free system that can trigger the nuclei purified from mouse liver and suspension-cultured carrot cells to undergo apoptosis as defined by the formation of apoptotic bodies and nucleosomal DNA fragments. The effects of different divalent cations and cycloheximide on DNA cleavage in this system were assessed. The fact that nuclei of plant cells can be induced to undergo apoptosis in a cell-free animal system suggests that animals and plants share a common signal transduction pathway triggering in the initiation stage of apoptosis.  (+info)