Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate. (17/1728)

Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.  (+info)

Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. (18/1728)

Several studies have implicated hepatitis C virus (HCV) core in influencing the expression of host genes. To identify cellular factors with a possible role in HCV replication and pathogenesis, we looked for cellular proteins that interact with the viral core protein. A human liver cDNA library was screened in a yeast two-hybrid assay to identify cellular proteins that bind to core. Several positive clones were isolated, one of which encoded the C-terminal 253 amino acids of a putative RNA helicase, a DEAD box protein designated DDX3. Bacterially expressed glutathione-S-transferase-DDX3 fusion protein specifically pulled down in vitro translated and radiolabeled HCV core, confirming a direct interaction. Immunofluorescent staining of HeLa cells with a polyclonal antiserum showed that DDX3 is located predominantly in nuclear speckles and at low levels throughout the cytoplasm. In cells infected with a recombinant vaccinia virus expressing HCV structural proteins (core, E1, and E2), DDX3 and core colocalized in distinct spots in the perinuclear region of the cytoplasm. The regions of the proteins involved in binding were found by deletion analysis to be the N-terminal 59 amino acid residues of core and a C-terminal RS-like domain of DDX3. The human DDX3 is a putative RNA helicase and a member of a highly conserved DEAD box subclass that includes murine PL10, Xenopus An3, and yeast Ded1 proteins. Their role in RNA metabolism or gene expression is unknown. The significance of core-helicase interaction in HCV replication and pathogenesis is discussed.  (+info)

Seminal plasma components stimulate interleukin-8 and interleukin-10 release. (19/1728)

Human seminal plasma has potent anti-inflammatory properties which are thought to confer a survival advantage to the spermatozoa within the hostile female genital tract. In contrast, a profound pro-inflammatory leukocytosis has been observed post-coitus in animals and humans. Whether components of seminal plasma are involved in initiating this leukocytic reaction is not known. This study investigated the effect of human seminal plasma, a seminal plasma fraction and its principal constituent prostaglandins, prostaglandin E2 (PGE2) and 19-hydroxy PGE, on the release of the pro-inflammatory neutrophil chemotactic factor interleukin-8 (IL-8) and the anti-inflammatory cytokines interleukin-10 (IL-10) and secretory leukocyte protease inhibitor (SLPI). The tissues studied were non-pregnant cervical explants, peripheral blood and the monocyte cell line U937. Seminal plasma fraction (SPF) significantly (P < 0.05) stimulated release of IL-8 and inhibited release of SLPI from non-pregnant cervical explants. SPF, PGE2 and 19-hydroxy PGE significantly (P< 0.005) stimulated IL-8 release from peripheral blood and U937 cells. 19-hydroxy PGE was significantly (P< 0.005) more effective than PGE2 in stimulating IL-8 release. Seminal plasma, SPF and PGE2 significantly (P < 0.05) stimulated IL-10 release from U937 cells. 19-hydroxy PGE stimulated IL-10 release from U937 cells but this failed to reach significance. Release of IL-10 by cervical explants and SLPI by peripheral blood and U937 cells were below the detection limit of the assays employed. We suggest that the anti- and pro-inflammatory immune responses which seminal plasma induces might act in combination initially to promote sperm survival and then to facilitate their removal from the female genital tract.  (+info)

Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. (20/1728)

The nucleotide exchange activity of RCC1, the only known nucleotide exchange factor for Ran, a Ras-like small guanosine triphosphatase, was required for microtubule aster formation with or without demembranated sperm in Xenopus egg extracts arrested in meiosis II. Consistently, in the RCC1-depleted egg extracts, Ran guanosine triphosphate (RanGTP), but not Ran guanosine diphosphate (RanGDP), induced self-organization of microtubule asters, and the process required the activity of dynein. Thus, Ran was shown to regulate formation of the microtubule network.  (+info)

Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. (21/1728)

Ran, a small guanosine triphosphatase, is suggested to have additional functions beyond its well-characterized role in nuclear trafficking. Guanosine triphosphate-bound Ran, but not guanosine diphosphate-bound Ran, stimulated polymerization of astral microtubules from centrosomes assembled on Xenopus sperm. Moreover, a Ran allele with a mutation in the effector domain (RanL43E) induced the formation of microtubule asters and spindle assembly, in the absence of sperm nuclei, in a gammaTuRC (gamma-tubulin ring complex)- and XMAP215 (Xenopus microtubule associated protein)-dependent manner. Therefore, Ran could be a key signaling molecule regulating microtubule polymerization during mitosis.  (+info)

Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements. (22/1728)

Spontaneous epithelial (S) to neuroblast (N) conversion enhanced the capacity of SK-N-SH neuroblastoma (NB) cells to invade reconstituted basement membrane in vitro. This involved a switch to matrix metalloproteinase (MMP) activity, in particular MMP-9, and was associated with the induction of MMP-9 expression. N-type-specific MMP-9 expression was herbimycin A inhibitable tyrosine kinase (possibly c-src) dependent and was regulated transcriptionally through GT-box (-52), and nuclear factor kappaB (NFkappaB; -600) elements within the MMP-9 gene. GT-box function was associated with elevated levels of specific nuclear GT-box binding complexes in N-type cells. NFkappaB function was associated with specific p50- and p65-containing nuclear NFkappaB binding complex(es). No function could be attributed to the proximal AP-1 (-79) element, and minimal function was attributed to the SP-1 (-560), ets (-540), or distal AP-1 (-533) elements. This was despite elevated levels of specific junD/fra-1 containing proximal AP-1 element binding complex(es) in N-type cells. Our data highlight a pivotal role for the GT-box, in concert with the NFkappaB element, in the transcriptional up-regulation of MMP-9 expression during spontaneous S to N phenotype conversion by SK-N-SH cells involved in enhanced basement membrane invasivity.  (+info)

The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. (23/1728)

IL-1-stimulated mesenchymal cells model molecular mechanisms of inflammation. Binding of IL-1 to the type I IL-1 receptor (IL-1R) clusters a multi-subunit signaling complex at focal adhesion complexes. Since Rho family GTPases coordinately organize actin cytoskeleton and signaling to regulate cell phenotype, we hypothesized that the IL-1R signaling complex contained these G proteins. IL-1 stimulated actin stress fiber formation in serum-starved HeLa cells in a Rho-dependent manner and rapidly activated nucleotide exchange on RhoA. Glutathione S-transferase (GST) fusion proteins, containing either the full-length IL-1R cytosolic domain (GST-IL-1Rcd) or the terminal 68 amino acids of IL-1R required for IL-1-dependent signal transduction, specifically coprecipitated both RhoA and Rac-1, but not p21(ras), from Triton-soluble HeLa cell extracts. In whole cells, a small-molecular-weight G protein coimmunoprecipitated by anti-IL-1R antibody was a substrate for C3 transferase, which specifically ADP-ribosylates Rho GTPases. Constitutively activated RhoA, loaded with [gamma-32P]GTP, directly interacted with GST-IL-1Rcd in a filter-binding assay. The IL-1Rcd-RhoA interaction was functionally important, since a dominant inhibitory mutant of RhoA prevented IL-1Rcd-directed transcriptional activation of the IL-6 gene. Consistent with our previous data demonstrating that IL-1R-associated myelin basic protein (MBP) kinases are necessary for IL-1-directed gene expression, cellular incorporation of C3 transferase inhibited IL-1R-associated MBP kinase activity both in solution and in gel kinase assays. In summary, IL-1 activated RhoA, which was physically associated with IL-1Rcd and necessary for activation of cytosolic nuclear signaling pathways. These findings suggest that IL-1-stimulated, Rho-dependent cytoskeletal reorganization may cluster signaling molecules in specific architectures that are necessary for persistent cell activation in chronic inflammatory disease.  (+info)

Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. (24/1728)

The endoplasmic reticulum (ER) in animal cells uses microtubule motor proteins to adopt and maintain its extended, reticular organization. Although the orientation of microtubules in many somatic cell types predicts that the ER should move toward microtubule plus ends, motor-dependent ER motility reconstituted in extracts of Xenopus laevis eggs is exclusively a minus end-directed, cytoplasmic dynein-driven process. We have used Xenopus egg, embryo, and somatic Xenopus tissue culture cell (XTC) extracts to study ER motility during embryonic development in Xenopus by video-enhanced differential interference contrast microscopy. Our results demonstrate that cytoplasmic dynein is the sole motor for microtubule-based ER motility throughout the early stages of development (up to at least the fifth embryonic interphase). When egg-derived ER membranes were incubated in somatic XTC cytosol, however, ER tubules moved in both directions along microtubules. Data from directionality assays suggest that plus end-directed ER tubule extensions contribute approximately 19% of the total microtubule-based ER motility under these conditions. In XTC extracts, the rate of ER tubule extensions toward microtubule plus ends is lower ( approximately 0.4 microm/s) than minus end-directed motility ( approximately 1.3 microm/s), and plus end-directed motility is eliminated by a function-blocking anti-conventional kinesin heavy chain antibody (SUK4). In addition, we provide evidence that the initiation of plus end-directed ER motility in somatic cytosol is likely to occur via activation of membrane-associated kinesin.  (+info)