Angiogenesis: a new theory for endometriosis. (49/46946)

Excessive endometrial angiogenesis is proposed as an important mechanism in the pathogenesis of endometriosis. Evidence is reviewed for the hypothesis that the endometrium of women with endometriosis has an increased capacity to proliferate, implant and grow in the peritoneal cavity. Data is summarized indicating that the endometrium of patients with endometriosis shows enhanced endothelial cell proliferation. Results are also reviewed indicating that the cell adhesion molecule integrin alphavbeta3 is expressed in more blood vessels in the endometrium of women with endometriosis when compared with normal women. Taken together, these results provide evidence for increased endometrial angiogenesis in women with endometriosis when compared with normal subjects. Endometriosis is one of the family of angiogenic diseases. Other angiogenic diseases include solid tumours, rheumatoid arthritis, psoriasis and diabetic retanopathy. Excessive endometrial angiogenesis suggests novel new medical treatments for endometriosis aimed at the inhibition of angiogenesis.  (+info)

Perturbation of mammalian cell division. III. The topography and kinetics of extrusion subdivision. (50/46946)

If mitotic-arrested, cold-stored HeLa cells are incubated at 37 degrees C a proportion of the population divides by an aberrant process which we have called subdivision by extrusion. This process has been studied by time-lapse photography and shown to differ from normal cleavage in several respects. The cell surface becomes more generally mobile and, instead of producing the precisely localized furrowing activity of cytokinesis, gives rise to multiple surface protrusions. These protrusions enlarge at the expense of the parent cell and develop into a cluster of small daughter cells (mini segregants). The surface structure of the cell, as seen by scanning electron microscopy, also changes; the microvilli characteristic of interphase, metaphase and cleaving HeLa cells are lost during extrusion and the cell surface becomes smooth. Extrusion activity is much more variable than division by cleavage in terms of both topography and kinetics, and in general takes longer to complete. Some cells in the cold-treated populations divide by mixtures of cleavage and extrusion or by cleavage alone. The relative numbers of cells dividing in different ways vary with the conditions of pretreatment and incubation of the mitotic cells. The greater the perturbation (e.g. longer cold storage), the greater the proportion of extruding rather than cleaving cells. Human diploid cells can also be induced to subdivide by extrusion. Possible mechanisms underlying the different types of division activity are discussed.  (+info)

Human, rat, and mouse kidney cells express functional erythropoietin receptors. (51/46946)

BACKGROUND: Erythropoietin (EPO), secreted by fibroblast-like cells in the renal interstitium, controls erythropoiesis by regulating the survival, proliferation, and differentiation of erythroid progenitor cells. We examined whether renal cells that are exposed to EPO express EPO receptors (EPO-R) through which analogous cytokine responses might be elicited. METHODS: Normal human and rat kidney tissue and defined cell lines of human, rat, and mouse kidney were screened, using reverse transcription-polymerase chain reaction, nucleotide sequencing, ligand binding, and Western blotting, for the expression of EPO-R. EPO's effects on DNA synthesis and cell proliferation were also examined. RESULTS: EPO-R transcripts were readily detected in cortex, medulla, and papilla of human and rat kidney, in mesangial (human, rat), proximal tubular (human, mouse), and medullary collecting duct cells (human). Nucleotide sequences of EPO-R cDNAs from renal cells were identical to those of erythroid precursor cells. Specific 125I-EPO binding revealed a single class of high- to intermediate-affinity EPO-Rs in each tested cell line (kD 96 pm to 1. 4 nm; Bmax 0.3 to 7.0 fmol/mg protein). Western blots of murine proximal tubular cell membranes revealed an EPO-R protein of approximately 68 kDa. EPO stimulated DNA synthesis and cell proliferation dose dependently. CONCLUSION: This is the first direct demonstration, to our knowledge, that renal cells possess EPO-Rs through which EPO stimulates mitogenesis. This suggests currently unrecognized cytokine functions for EPO in the kidney, which may prove beneficial in the repair of an injured kidney while being potentially detrimental in renal malignancies.  (+info)

Proteinuria induces tubular cell turnover: A potential mechanism for tubular atrophy. (52/46946)

BACKGROUND: Proteinuria and tubular atrophy have both been closely linked with progressive renal failure. We hypothesized that apoptosis may be induced by tubular cell exposure to heavy proteinuria, potentially leading to tubular atrophy. Apoptosis was studied in a rat model of "pure" proteinuria, which does not induce renal impairment, namely protein-overload proteinuria. METHODS: Adult female Lewis rats underwent intraperitoneal injection of 2 g of bovine serum albumin (BSA, N = 16) or sham saline injections (controls, N = 8) daily for seven days. Apoptosis was assessed at day 7 in tissue sections using in situ end labeling (ISEL) and electron microscopy. ISEL-positive nuclei (apoptotic particles) were counted in blinded fashion using image analysis with NIH Image. Cell proliferation was assessed by detection of mRNA for histone by in situ hybridization, followed by counting of positive cells using NIH Image. RESULTS: Animals injected with saline showed very low levels of apoptosis on image analysis. BSA-injected rats had heavy proteinuria and showed both cortical and medullary apoptosis on ISEL. This was predominantly seen in the tubules and, to a lesser extent, in the interstitial compartment. Overall, the animals injected with BSA showed a significant 30-fold increase in the number of cortical apoptotic particles. Electron microscopy of tubular cells in a BSA-injected animal showed a progression of ultrastructural changes consistent with tubular cell apoptosis. The BSA-injected animals also displayed a significant increase in proximal tubular cell proliferation. This increased proliferation was less marked than the degree of apoptosis. CONCLUSION: Protein-overload proteinuria in rats induces tubular cell apoptosis. This effect is only partially balanced by proliferation and potentially provides a direct mechanism whereby heavy proteinuria can induce tubular atrophy and progressive renal failure.  (+info)

Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. (53/46946)

Aberrant cell proliferation and increased invasive and metastatic behavior are hallmarks of the advancement of breast cancer. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. The peripheral-type benzodiazepine receptor (PBR) is an Mr 18,000 protein primarily localized to the mitochondria. PBR mediates cholesterol transport across the mitochondrial membranes in steroidogenic cells. A role for PBR in the regulation of tumor cell proliferation has also been shown. In this study, we examined the expression, characteristics, localization, and function of PBR in a battery of human breast cancer cell lines differing in their invasive and chemotactic potential as well as in several human tissue biopsies. Expression of PBR ligand binding and mRNA was dramatically increased in the highly aggressive cell lines, such as MDA-231, relative to nonaggressive cell lines, such as MCF-7. PBR was also found to be expressed at high levels in aggressive metastatic human breast tumor biopsies compared with normal breast tissues. Subcellular localization with both antibodies and a fluorescent PBR drug ligand revealed that PBR from the MDA-231 cell line as well as from aggressive metastatic human breast tumor biopsies localized primarily in and around the nucleus. This localization is in direct contrast to the largely cytoplasmic localization seen in MCF-7 cells, normal breast tissue, and to the typical mitochondrial localization seen in mouse tumor Leydig cells. Pharmacological characterization of the receptor and partial nucleotide sequencing of PBR cDNA revealed that the MDA-231 PBR is similar, although not identical, to previously described PBR. Addition of high affinity PBR drug ligands to MDA-231 cells increased the incorporation of bromodeoxyuridine into the cells in a dose-dependent manner, suggesting a role for PBR in the regulation of MDA-231 cell proliferation. Cholesterol uptake into isolated MDA-231 nuclei was found to be 30% greater than into MCF-7 nuclei. High-affinity PBR drug ligands regulated the levels of cholesterol present in MDA-231 nuclei but not in MCF-7. In addition, the PBR-dependent MDA-231 cell proliferation was found to highly correlate (r = -0.99) with the PBR-mediated changes in nuclear membrane cholesterol levels. In conclusion, these data suggest that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression, thus participating in the advancement of the disease.  (+info)

COOH-terminal domain of p53 modulates p53-mediated transcriptional transactivation, cell growth, and apoptosis. (54/46946)

The tumor suppressor protein p53 contributes to the control of cell cycle checkpoints and stress-induced apoptosis and is frequently mutated in many different types of human cancers. The COOH terminus of p53 modulates the transcriptional and apoptotic activities of the protein. Although COOH-terminal mutants of p53 are uncommon, we proposed that these p53 mutants nevertheless contributed to the selective clonal expansion of the cancer cells. Therefore, we analyzed the tumor-derived p53 COOH-terminal domain (CTD) mutants (352D/H, 356G/W, 342-stop, 360-del, and 387-del) functionally. The results have revealed that all mutants have impaired apoptotic activity when compared with wild-type p53. However, some of these mutants still transcriptionally transactivate p21Waf/Cip1 and inhibit cell growth. Interestingly, of the tumor-derived CTD mutants, oligomerization-defective mutant 342-stop was the only one that did not exhibit sequence-specific DNA binding or failed to transactivate p21Waf1/Cip1, Bax, and IGF-BP3 transcriptionally. The failure to inhibit cell growth by this tumor-derived CTD mutant supports the hypothesis that p53 sequence-specific transcriptional transactivity to p21Waf1/Cip1 is correlated with induction of cell cycle arrest and that the p53 transcriptional transactivity requires oligomerization of the p53 protein. These and other data indicate that the CTD of p53 is an important component of p53-mediated apoptosis and cell growth arrest and that inactivation of the apoptotic function, but not the inhibition of growth, is an important step during human tumorigenesis.  (+info)

Bombesin stimulates adhesion, spreading, lamellipodia formation, and proliferation in the human colon carcinoma Isreco1 cell line. (55/46946)

The neuropeptide bombesin and its mammalian homologue, gastrin-releasing peptide (GRP), enhance proliferation in some but not all human tumor cell lines. The pathophysiological relevance of the bombesin/GRP receptor (GRP-R), which is expressed in 30% of human colon tumor cell lines and in 24-40% of native tumors, has not been clearly assessed at this time. We studied the effects of bombesin in the recently characterized human colon carcinoma Isreco1 cell line. Competitive reverse transcription-PCR showed a high GRP-R mRNA level in Isreco1 cells, and binding studies confirmed the expression of bombesin/GRP-subtype receptors (Kd = 0.42 nM; Bmax = 18,000 sites/cell). Exposure to bombesin resulted in an increase of intracellular calcium concentrations. Bombesin (1 nM) induced cell spreading at 24 h (21.7+/-1.6% versus 6.4+/-0.8% in control cells; P<0.01) and markedly increased the formation of lamellipodia. In addition, adhesion of Isreco1 cells to collagen I-coated culture dishes was stimulated in the presence of 1 nM bombesin (69+/-6% versus 42+/-1% in control cells; P<0.01). Finally, bombesin significantly increased [3H]thymidine uptake by Isreco1 cells in a dose-dependent manner, with a first significant response at 0.1 nM and a maximal effect at 100 nM bombesin (192.2+/-9.7% of control). These results clearly indicate that bombesin exerts morphological, adhesive, and proliferative effects on Isreco1 cells, suggesting that expression of the bombesin/GRP-R may contribute to the malignant properties of colon carcinoma cells.  (+info)

Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. (56/46946)

The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34(+) cells. Normal promyelocytes (CD34(-)33(+) and CD34(-)13(+)) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v 28.6%; P =.01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P <.001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P <.05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P <.005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P <. 001) and gender (P =.03). Results confirm the reported expression of leptin receptor in normal CD34(+) cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.  (+info)