Met-HGF/SF mediates growth arrest and differentiation in T47D breast cancer cells. (73/24243)

Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor that exerts mitogenic, motogenic, and morphogenic effects. To elucidate the cellular mechanisms underlying the pluripotent function of this growth factor, T47D human breast cancer cells were transfected with human hgf/sf. The hgf/sf-positive clones exhibited different levels of biologically functional HGF/SF expression and up-regulation of endogenous Met (HGF/SF receptor) expression. In addition, a constitutive phosphorylation of the receptor on tyrosine residues was detected, establishing a Met-HGF/SF autocrine loop. The autocrine activation of Met caused marked inhibition in cell growth accompanied by cell accumulation at G0/G1. These cells underwent terminal cell differentiation as determined by morphological changes, synthesis of milk proteins such as beta-casein and alpha-lactalbumin, and production of lipid vesicles. Our results demonstrate that Met-HGF/SF, an oncogenic signal transduction pathway, is capable of inducing growth arrest and differentiation in certain breast cancer cells and, thus, may have potential as therapeutic and/or prognostic tools in breast cancer treatment.  (+info)

Farnesol-induced growth inhibition in Saccharomyces cerevisiae by a cell cycle mechanism. (74/24243)

The growth of budding yeast, Saccharomyces cerevisiae, was inhibited in medium containing 25 microM farnesol (FOH). The FOH-treated cells were still viable, and were characterized by a transition from budded to unbudded phase as well as a significant loss of intracellular diacylglycerol (DAG). FOH-induced growth inhibition could be effectively prevented by the coaddition of a membrane-permeable DAG analogue which can activate yeast protein kinase C (PKC). However, yeast cell growth was not initiated upon addition of the PKC activator when the cells had been pretreated with FOH for 20 min. The failure in cell growth recovery was believed to be due to a signalling-mediated cell cycle arrest in FOH-pretreated cells. Differential display analysis demonstrated that the expression of cell cycle genes encoding DNA ligase (CDC9) and histone acetyltransferase (HAT2) was strongly repressed in FOH-treated cells. Repression of the expression of these genes was effectively cancelled when cells were grown in medium supplemented with DAG. The authors propose an interference with a phosphatidylinositol-type signalling which is involved in cell cycle progression as a cause of FOH-induced growth inhibition in yeast cells.  (+info)

Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. (75/24243)

Examination of cells at the early stages of herpes simplex virus type 1 infection revealed that the viral immediate-early protein Vmw110 (also known as ICP0) formed discrete punctate accumulations associated with centromeres in both mitotic and interphase cells. The RING finger domain of Vmw110 (but not the C-terminal region) was essential for its localization at centromeres, thus distinguishing the Vmw110 sequences required for centromere association from those required for its localization at other discrete nuclear structures known as ND10, promyelocytic leukaemia (PML) bodies or PODs. We have shown recently that Vmw110 can induce the proteasome-dependent loss of several cellular proteins, including a number of probable SUMO-1-conjugated isoforms of PML, and this results in the disruption of ND10. In this study, we found some striking similarities between the interactions of Vmw110 with ND10 and centromeres. Specifically, centromeric protein CENP-C was lost from centromeres during virus infection in a Vmw110- and proteasome-dependent manner, causing substantial ultrastructural changes in the kinetochore. In consequence, dividing cells either became stalled in mitosis or underwent an unusual cytokinesis resulting in daughter cells with many micronuclei. These results emphasize the importance of CENP-C for mitotic progression and suggest that Vmw110 may be interfering with biochemical mechanisms which are relevant to both centromeres and ND10.  (+info)

The essential role of yeast topoisomerase III in meiosis depends on recombination. (76/24243)

Yeast cells mutant for TOP3, the gene encoding the evolutionary conserved type I-5' topoisomerase, display a wide range of phenotypes including altered cell cycle, hyper-recombination, abnormal gene expression, poor mating, chromosome instability and absence of sporulation. In this report, an analysis of the role of TOP3 in the meiotic process indicates that top3Delta mutants enter meiosis and complete the initial steps of recombination. However, reductional division does not occur. Deletion of the SPO11 gene, which prevents recombination between homologous chromosomes in meiosis I division, allows top3Delta mutants to form viable spores, indicating that Top3 is required to complete recombination successfully. A topoisomerase activity is involved in this process, since expression of bacterial TopA in yeast top3Delta mutants permits sporulation. The meiotic block is also partially suppressed by a deletion of SGS1, a gene encoding a helicase that interacts with Top3. We propose an essential role for Top3 in the processing of molecules generated during meiotic recombination.  (+info)

Membrane dielectric responses of human T-lymphocytes following mitogenic stimulation. (77/24243)

Human peripheral blood T-lymphocytes, normally resting at the G0 phase, were stimulated with phytohemagglutinin (PHA) and interleukin-2 (IL-2) to induce the cell division cycle. The cells were examined at 24-h intervals for up to 96 h by flow cytometry to determine cell cycle distributions and by electrorotation to determine dielectric properties. The average membrane specific capacitance was found to vary from 12 (+/-1.5) mF/m2 prior to stimulation to 10 (+/-1.5) and 16 (+/-3.5) mF/m2 at 24 and 48 h after stimulation, respectively, and to remain unchanged up to 96 h after stimulation. Scanning electron microscopy studies of the cells revealed an increased complexity in cell membrane morphology following stimulation, suggesting that the observed change in the membrane capacitance was dominated by the alteration of cell surface structures. The average electrical conductivity of the cell interior decreased from approximately 1.1 S/m prior to stimulation to approximately 0.8 S/m at 24 h after stimulation and showed little change thereafter. The average dielectric permittivity of the cell interior remained almost unchanged throughout the course of the cell stimulation. The percentage of T-lymphocytes in the S and G2/M phases increased from approximately 4% prior to stimulation to approximately 11 and approximately 34% at 24 and 48 h after stimulation, respectively. The large change in membrane specific capacitance between the 24 and 48 h time period coincided with the large alteration in the cell cycle distribution where the S and G2/M populations increased by approximately 23%. These data, together with an analysis of the variation of the membrane capacitance during the cell cycle based on the cell cycle-dependent membrane lipid accumulation, show that there is a correlation between membrane capacitance and cell cycle phases that reflects alterations in the cell plasma membrane.  (+info)

Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose. (78/24243)

BACKGROUND: To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C. CONCLUSIONS: These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress.  (+info)

Cyclin-dependent kinase control of centrosome duplication. (79/24243)

Centrosomes nucleate microtubules and duplicate once per cell cycle. This duplication and subsequent segregation in mitosis results in maintenance of the one centrosome/cell ratio. Centrosome duplication occurs during the G1/S transition in somatic cells and must be coupled to the events of the nuclear cell cycle; failure to coordinate duplication and mitosis results in abnormal numbers of centrosomes and aberrant mitoses. Using both in vivo and in vitro assays, we show that centrosome duplication in Xenopus laevis embryos requires cyclin/cdk2 kinase activity. Injection of the cdk (cyclin-dependent kinase) inhibitor p21 into one blastomere of a dividing embryo blocks centrosome duplication in that blastomere; the related cdk inhibitor p27 has a similar effect. An in vitro system using Xenopus extracts carries out separation of the paired centrioles within the centrosome. This centriole separation activity is dependent on cyclin/cdk2 activity; depletion of either cdk2 or of the two activating cyclins, cyclin A and cyclin E, eliminates centriole separation activity. In addition, centriole separation is inhibited by the mitotic state, suggesting a mechanism of linking the cell cycle to periodic duplication of the centrosome.  (+info)

In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. (80/24243)

A rare set of hematopoietic stem cells (HSC) must undergo a massive expansion to produce mature blood cells. The phenotypic isolation of HSC from mice offers the opportunity to determine directly their proliferation kinetics. We analyzed the proliferation and cell cycle kinetics of long-term self-renewing HSC (LT-HSC) in normal adult mice. At any one time, approximately 5% of LT-HSC were in S/G2/M phases of the cell cycle and another 20% were in G1 phase. BrdUrd incorporation was used to determine the rate at which different cohorts of HSC entered the cell cycle over time. About 50% of LT-HSC incorporated BrdUrd by 6 days and >90% incorporated BrdUrd by 30 days. By 6 months, 99% of LT-HSC had incorporated BrdUrd. We calculated that approximately 8% of LT-HSC asynchronously entered the cell cycle per day. Nested reverse transcription-PCR analysis revealed cyclin D2 expression in a high proportion of LT-HSC. Although approximately 75% of LT-HSC are quiescent in G0 at any one time, all HSC are recruited into cycle regularly such that 99% of LT-HSC divide on average every 57 days.  (+info)