C/EBPalpha regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice. (73/19654)

We previously showed that the rate of hepatocyte proliferation in livers from newborn C/EBPalpha knockout mice was increased. An examination of cell cycle-related proteins showed that the cyclin-dependent kinase (CDK) inhibitor p21 level was reduced in the knockout animals compared to that in wild-type littermates. Here we show additional cell cycle-associated proteins that are affected by C/EBPalpha. We have observed that C/EBPalpha controls the composition of E2F complexes through interaction with the retinoblastoma (Rb)-like protein, p107, during prenatal liver development. S-phase-specific E2F complexes containing E2F, DP, cdk2, cyclin A, and p107 are observed in the developing liver. In wild-type animals these complexes disappear by day 18 of gestation and are no longer present in the newborn animals. In the C/EBPalpha mutant, the S-phase-specific complexes do not diminish and persist to birth. The elevation of levels of the S-phase-specific E2F-p107 complexes in C/EBPalpha knockout mice correlates with the increased expression of several E2F-dependent genes such as those that encode cyclin A, proliferating cell nuclear antigen, and p107. The C/EBPalpha-mediated regulation of E2F binding is specific, since the deletion of another C/EBP family member, C/EBPbeta, does not change the pattern of E2F binding during prenatal liver development. The addition of bacterially expressed, purified His-C/EBPalpha to the E2F binding reaction resulted in the disruption of E2F complexes containing p107 in nuclear extracts from C/EBPalpha knockout mouse livers. Ectopic expression of C/EBPalpha in cultured cells also leads to a reduction of E2F complexes containing Rb family proteins. Coimmunoprecipitation analyses revealed an interaction of C/EBPalpha with p107 but none with cdk2, E2F1, or cyclin A. A region of C/EBPalpha that has sequence similarity to E2F is sufficient for the disruption of the E2F-p107 complexes. Despite its role as a DNA binding protein, C/EBPalpha brings about a change in E2F complex composition through a protein-protein interaction. The disruption of E2F-p107 complexes correlates with C/EBPalpha-mediated growth arrest of hepatocytes in newborn animals.  (+info)

Atm is dispensable for p53 apoptosis and tumor suppression triggered by cell cycle dysfunction. (74/19654)

Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  (+info)

Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin beta1. (75/19654)

Activated Cdc42-associated kinase-2 (ACK-2) is a non-receptor tyrosine kinase that appears to be a highly specific target for the Rho-related GTP-binding protein Cdc42. In order to understand better how ACK-2 activity is regulated in cells, we have expressed epitope-tagged forms of this tyrosine kinase in COS-7 and NIH3T3 cells. We find that ACK-2 can be activated by cell adhesion in a Cdc42-dependent manner. However, unlike the focal adhesion kinase, which also is activated by cell adhesion, the activation of ACK-2 is F-actin-independent and does not require cell spreading. In addition, overexpression of ACK-2 in COS-7 cells did not result in the stimulation of extracellular signal-regulated kinase activity but rather activated the c-Jun kinase. Both anti-integrin beta1 antibody and RGD peptides inhibited the activation of ACK-2 by cell adhesion. In addition, ACK-2 was co-immunoprecipitated with integrin beta1. Overall, these findings suggest that ACK-2 interacts with integrin complexes and mediates cell adhesion signals in a Cdc42-dependent manner.  (+info)

Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. (76/19654)

We have prepared phosphorylated cyclin-dependent protein kinase 2 (CDK2) for crystallization using the CDK-activating kinase 1 (CAK1) from Saccharomyces cerevisiae and have grown crystals using microseeding techniques. Phosphorylation of monomeric human CDK2 by CAK1 is more efficient than phosphorylation of the binary CDK2-cyclin A complex. Phosphorylated CDK2 exhibits histone H1 kinase activity corresponding to approximately 0.3% of that observed with the fully activated phosphorylated CDK2-cyclin A complex. Fluorescence measurements have shown that Thr160 phosphorylation increases the affinity of CDK2 for both histone substrate and ATP and decreases its affinity for ADP. By contrast, phosphorylation of CDK2 has a negligible effect on the affinity for cyclin A. The crystal structures of the ATP-bound forms of phosphorylated CDK2 and unphosphorylated CDK2 have been solved at 2.1-A resolution. The structures are similar, with the major difference occurring in the activation segment, which is disordered in phosphorylated CDK2. The greater mobility of the activation segment in phosphorylated CDK2 and the absence of spontaneous crystallization suggest that phosphorylated CDK2 may adopt several different mobile states. The majority of these states are likely to correspond to inactive conformations, but a small fraction of phosphorylated CDK2 may be in an active conformation and hence explain the basal activity observed.  (+info)

Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. (77/19654)

Myocardial hypertrophy is associated with increased basal glucose metabolism. Basal glucose transport into cardiac myocytes is mediated by the GLUT1 isoform of glucose transporters, whereas the GLUT4 isoform is responsible for regulatable glucose transport. Treatment of neonatal cardiac myocytes with the hypertrophic agonist 12-O-tetradecanoylphorbol-13-acetate or phenylephrine increased expression of Glut1 mRNA relative to Glut4 mRNA. To study the transcriptional regulation of GLUT1 expression, myocytes were transfected with luciferase reporter constructs under the control of the Glut1 promoter. Stimulation of the cells with 12-O-tetradecanoylphorbol-13-acetate or phenylephrine induced transcription from the Glut1 promoter, which was inhibited by cotransfection with the mitogen-activated protein kinase phosphatases CL100 and MKP-3. Cotransfection of the myocytes with constitutively active versions of Ras and MEK1 or an estrogen-inducible version of Raf1 also stimulated transcription from the Glut1 promoter. Hypertrophic induction of the Glut1 promoter was also partially sensitive to inhibition of the phosphatidylinositol 3-kinase pathway and was strongly inhibited by cotransfection with dominant-negative Ras. Thus, Ras activation and pathways downstream of Ras mediate induction of the Glut1 promoter during myocardial hypertrophy.  (+info)

The Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. (78/19654)

The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of pre-replicative complexes that are required for firing DNA replication at origins at the beginning of S phase. Cdc6p protein levels oscillate during the cell cycle. In a normal cell cycle the presence of this protein is restricted to G1, partly because the CDC6 gene is transcribed only during G1 and partly because the Cdc6p protein is rapidly degraded at late G1/early S phase. We report here that the Cdc6p protein is degraded in a Cdc4-dependent manner, suggesting that phosphorylated Cdc6 is specifically recognized by the ubiquitin-mediated proteolysis machinery. Indeed, we have found that Cdc6 is ubiquitinated in vivo and degraded by a Cdc4-dependent mechanism. Our data, together with previous observations regarding Cdc6 stability, suggest that under physiological conditions budding yeast cells degrade ubiquitinated Cdc6 every cell cycle at the beginning of S phase.  (+info)

Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. (79/19654)

In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.  (+info)

Overexpression of D-type cyclins, E2F-1, SV40 large T antigen and HPV16 E7 rescue cell cycle arrest of tsBN462 cells caused by the CCG1/TAF(II)250 mutation. (80/19654)

tsBN462 cells, which have a point mutation in CCG1/TAF(II)250, a component of TFIID complex, arrest in G1 at the nonpermissive temperature of 39.5 degrees C. Overexpression of D-type cyclins rescued the cell cycle arrest of tsBN462 cells, suggesting that the cell cycle arrest was through Rb. Consistent with this, overexpression of E2F-1, whose function is repressed by the hypophosphorylated form of Rb, also rescued the cell cycle arrest. Moreover, expression of the viral oncoproteins SV40 large T antigen and HPV16 E7, which both bind Rb and inactivate its function, rescued the cell cycle arrest, whereas HPV16 E6 did not. Mutation of the Rb-binding motif in E7 abrogated its ability to rescue the cell cycle arrest. Expression of exogenous cyclin D1, SV40 large T antigen or CCG1/TAF(II)250 increased cyclin A expression at 39.5 degrees C. Coexpression of HPV16 E7 and adenovirus E1b19K, which blocks apoptosis, rescued the proliferation of tsBN462 cells at 38.5 degrees C. To investigate the mechanism underlying the lack of cyclin D1 expression, deletion analysis of cyclin D1 promoter was performed. The 0.15 kbp cyclin D1 core promoter region, which lacks any transcription factor binding motifs, still exhibited a temperature-sensitive phenotype in tsBN462 cells suggesting that CCG1/TAF(II)250 is critical for the function of the cyclin D1 core promoter.  (+info)