Loading...
(1/9582) Expression of trophinin, tastin, and bystin by trophoblast and endometrial cells in human placenta.

Trophinin, tastin, and bystin comprise a complex mediating a unique homophilic cell adhesion between trophoblast and endometrial epithelial cells at their respective apical cell surfaces. In this study, we prepared mouse monoclonal antibodies specific to each of these molecules. The expression of these molecules in the human placenta was examined immunohistochemically using the antibodies. In placenta from the 6th week of pregnancy, trophinin and bystin were found in the cytoplasm of the syncytiotrophoblast in the chorionic villi, and in endometrial decidual cells at the utero placental interface. Tastin was exclusively present on the apical side of the syncytiotrophoblast. Tissue sections were also examined by in situ hybridization using RNA probes specific to each of these molecules. This analysis showed that trophoblast and endometrial epithelial cells at the utero placental interface express trophinin, tastin, and bystin. In wk 10 placenta, trophinin and bystin were found in the intravillous cytotrophoblast, while tastin was not found in the villi. After wk 10, levels of all three proteins decreased and then disappeared from placental villi.  (+info)

(2/9582) Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats.

BACKGROUND: Extensive renal ablation is associated with progressive sclerosis of the remnant kidney. Because lymphocytes and monocytes accumulate in the remnant kidney, it is likely that they play a role in the renal scarring. Therefore, we treated rats with 5/6 nephrectomy (5/6Nx) with mycophenolate mofetil (MMF), a drug that has an antiproliferative effect and that suppresses the expression of intercellular adhesion molecules. METHODS: Sprague-Dawley rats with 5/6Nx received MMF (30 mg. kg-1. day-1 by daily gastric gavage, N = 15) or vehicle (N = 16). Ten additional rats were sham operated. All rats were fed a 30% protein diet. Body weight, serum creatinine, and urinary protein excretion were determined weekly. Lipid peroxidation, as a measure of oxidative stress observed by urinary malondialdehyde determinations, was performed every two weeks. Histologic studies were done in the remnant kidney four weeks (9 rats from the vehicle-treated group, 7 rats from the MMF group, and 5 sham-operated rats) and eight weeks after surgery (the remaining rats). Glomerular volume, sclerosis in glomeruli (segmental and global) and interstitium (semiquantitative scale), infiltrating lymphocytes and macrophages (CD43- and ED1-positive cells), and expression of adhesion molecules (CD54, CD18, and CD11b) were analyzed. RESULTS: MMF treatment prevented the progressive increment in serum creatinine and the proteinuria observed in the 5/6 nephrectomized rats during the eight weeks of observation (P < 0.01). Weight gain was comparable in the MMF-treated and sham-operated rats, whereas weight gain was decreased in untreated 5/6 nephrectomized rats. Excretion of malondialdehyde increased after surgery but returned sooner to control levels in the MMF-treated rats. Increments in glomerular size and mean arterial blood pressure induced by renal ablation were not modified by MMF treatment. Eight weeks after surgery, segmental sclerosis was present in 48.4 +/- 8.35% (+/- sd) glomeruli in the vehicle-treated group versus 25 +/- 10.5% in the MMF-treated group (P < 0.001). Interstitial fibrosis was reduced significantly with MMF treatment (P < 0.001). Infiltration with CD43- and ED1-positive cells in glomeruli and interstitium was two to five times lower in MMF-treated rats (P < 0.01). Expression of adhesion molecules CD18 and CD11b was similarly reduced. CONCLUSION: MMF ameliorates the progressive renal damage in the remnant kidney after 5/6Nx. This effect is associated with a reduction in the infiltration of lymphocytes and monocytes, whereas glomerular hypertrophy and systemic hypertension are unchanged.  (+info)

(3/9582) A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish.

Peroxinectin, a cell-adhesive peroxidase (homologous to human myeloperoxidase), from the crayfish Pacifastacus leniusculus, was shown by immuno-fluorescence to bind to the surface of crayfish blood cells (haemocytes). In order to identify a cell surface receptor for peroxinectin, labelled peroxinectin was incubated with a blot of haemocyte membrane proteins. It was found to specifically bind two bands of 230 and 90 kDa; this binding was decreased in the presence of unlabelled peroxinectin. Purified 230/90 kDa complex also bound peroxinectin in the same assay. In addition, the 230 kDa band binds the crayfish beta-1,3-glucan-binding protein. The 230 kDa band could be reduced to 90 kDa, thus showing that the 230 kDa is a multimer of 90 kDa units. The peroxinectin-binding protein was cloned from a haemocyte cDNA library, using immuno-screening or polymerase chain reaction based on partial amino acid sequence of the purified protein. It has a signal sequence, a domain homologous to CuZn-containing superoxide dismutases, and a basic, proline-rich, C-terminal tail, but no membrane-spanning segment. In accordance, the 90 and 230 kDa bands had superoxide dismutase activity. Immuno-fluorescence of non-permeabilized haemocytes with affinity-purified antibodies confirmed that the crayfish CuZn-superoxide dismutase is localized at the cell surface; it could be released from the membrane with high salt. It was thus concluded that the peroxinectin-binding protein is an extracellular SOD (EC-SOD) and a peripheral membrane protein, presumably kept at the cell surface via ionic interaction with its C-terminal region. This interaction with a peroxidase seems to be a novel function for an SOD. The binding of the cell surface SOD to the cell-adhesive/opsonic peroxinectin may mediate, or regulate, cell adhesion and phagocytosis; it may also be important for efficient localized production of microbicidal substances.  (+info)

(4/9582) Interaction of lipopolysaccharide with human small intestinal lamina propria fibroblasts favors neutrophil migration and peripheral blood mononuclear cell adhesion by the production of proinflammatory mediators and adhesion molecules.

Fibroblasts are important effector cells having a potential role in augmenting the inflammatory responses in various diseases. In infantile diarrhea caused by enteropathogenic Escherichia coli (EPEC), the mechanism of inflammatory reactions at the mucosal site remains unknown. Although the potential involvement of fibroblasts in the pathogenesis of cryptococcus-induced diarrhea in pigs has been suggested, the precise role of lamina propria fibroblasts in the cellular pathogenesis of intestinal infection and inflammation caused by EPEC requires elucidation. Earlier we reported the lipopolysaccharide (LPS)-induced cell proliferation, and collagen synthesis and downregulation of nitric oxide in lamina propria fibroblasts. In this report, we present the profile of cytokines and adhesion molecules in the cultured and characterized human small intestinal lamina propria fibroblasts in relation to neutrophil migration and adhesion in response to lipopolysaccharide (LPS) extracted from EPEC 055:B5. Upon interaction with LPS (1-10 micrograms/ml), lamina propria fibroblasts produced a high level of proinflammatory mediators, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha and cell adhesion molecules (CAM) such as intercellular cell adhesion molecule (ICAM), A-CAM, N-CAM and vitronectin in a time-dependent manner. LPS induced cell-associated IL-1alpha and IL-1beta, and IL-6, IL-8 and TNF-alpha as soluble form in the supernatant. Apart from ICAM, vitronectin, A-CAM, and N-CAM proteins were strongly induced in lamina propria fibroblasts by LPS. Adhesion of PBMC to LPS-treated lamina propria fibroblasts was ICAM-dependent. LPS-induced ICAM expression in lamina propria fibroblasts was modulated by whole blood, PBMC and neutrophils. Conditioned medium of LPS-treated lamina propria fibroblasts remarkably enhanced the neutrophil migration. The migration of neutrophils was inhibited by anti-IL-8 antibody. Co-culture of fibroblasts with neutrophils using polycarbonate membrane filters exhibited time-dependent migration of neutrophils. These findings indicate that the coordinate production of proinflammatory cytokines and adhesion molecules in lamina propria fibroblasts which do not classically belong to the immune system can influence the local inflammatory reactions at the intestinal mucosal site during bacterial infections and can influence the immune cell population residing in the lamina propria.  (+info)

(5/9582) CD28 ligation induces tyrosine phosphorylation of Pyk2 but not Fak in Jurkat T cells.

Protein tyrosine kinases are critical for the function of CD28 in T cells. We examined whether the tyrosine kinases Pyk2 and Fak (members of the focal adhesion kinase family) are involved in CD28 signaling. We found that ligating CD28 in Jurkat T cells rapidly increases the tyrosine phosphorylation of Pyk2 but not of Fak. Paxillin, a substrate for Pyk2 and Fak, was not tyrosine-phosphorylated after CD28 ligation. CD28-induced tyrosine phosphorylation of Pyk2 was markedly reduced in the absence of external Ca2+. Previous studies have shown that the T cell antigen receptor (TCR) induces tyrosine phosphorylation of Pyk2. In this report, the concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of Pyk2; however, the extent of phosphorylation by both receptors was equivalent to the sum of that induced by each receptor alone. The Syk/Zap inhibitor piceatannol blocked CD28, and TCR induced tyrosine phosphorylation of Pyk2, suggesting that Syk/Zap is involved in Pyk2 phosphorylation. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin blocked TCR- but not CD28-induced phosphorylation of Pyk2, suggesting that CD28 and TCR activate distinct pathways to induce tyrosine phosphorylation of Pyk2. Notably, depleting phorbol 12-myristate 13-acetate-sensitive protein kinase C did not block CD28- and CD3-induced tyrosine phosphorylation of Pyk2. These data provide evidence for the involvement of Pyk2 in the CD28 signaling cascade and suggest that neither Fak nor paxillin is involved in the signaling pathways of CD28.  (+info)

(6/9582) Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis.

Chemokines are a family of proinflammatory cytokines that attract and activate specific types of leukocytes. Chemokines mediate their effects via interaction with seven transmembrane G protein-coupled receptors (GPCR). Using CCR5-transfected HEK-293 cells, we show that both the CCR5 ligand, RANTES, as well as its derivative, aminooxypentane (AOP)- RANTES, trigger immediate responses such as Ca2+ influx, receptor dimerization, tyrosine phosphorylation, and Galphai as well as JAK/STAT association to the receptor. In contrast to RANTES, (AOP)-RANTES is unable to trigger late responses, as measured by the association of focal adhesion kinase (FAK) to the chemokine receptor complex, impaired cell polarization required for migration, or chemotaxis. The results are discussed in the context of the dissociation of the late signals, provoked by the chemokines required for cell migration, from early signals.  (+info)

(7/9582) Expression of intercellular adhesion molecules ICAM-1 and ICAM-2 in human endometrium: regulation by interferon-gamma.

The purpose of this study was to localize intercellular adhesion molecule (ICAM)-1 and ICAM-2 in human endometrium and myometrium throughout the menstrual cycle, and to determine whether the expression of these molecules is regulated by interferon (IFN)-gamma. ICAM-1 and ICAM-2 distribution was examined in endometrial biopsies by immunocytochemistry, and Northern blotting was used to quantify ICAM-1 and ICAM-2 mRNA expression in isolated endometrial glands. Stromal fibroblast cultures were exposed to IFN-gamma and the effect on expression of ICAM-1 and ICAM-2 was determined by immunocytochemistry and Northern blotting. ICAM-1 was localized in vivo to the apical surface of the glandular epithelium, the vascular endothelium and endometrial stromal cells throughout the menstrual cycle. Stromal expression of ICAM-1 was up-regulated in menstrual specimens. Northern blotting confirmed the presence of ICAM-1 mRNA in isolated endometrial glands. The expression of ICAM-1 antigen and message was increased in stromal cell culture after incubation with IFN-gamma in a time-dependent manner, suggesting that this cytokine stimulates the expression of ICAM-1 in the endometrial stroma. ICAM-2 antigen expression was restricted to the vascular endothelium. ICAM-2 mRNA was absent in endometrial glands. The widespread distribution of ICAM-1 in human endometrium suggests that this molecule is involved in the process of menstruation, the functioning of glands, blood vessels and stroma, and in regulating leukocyte trafficking into the tissue. ICAM-2 is restricted to the vascular endothelium where it might modulate leukocyte invasion of the stroma and myometrial connective tissue.  (+info)

(8/9582) Characterization of prethymic progenitors within the chicken embryo.

The thymic primordium in both birds and mammals is first colonized by cells emerging from the intra-embryonic mesenchyme but the nature of these precursors is poorly understood. We demonstrate here an early embryonic day 7 prethymic population with T lymphoid potential. Our work is a phenotypic analysis of, to date, the earliest embryonic prethymic progenitors arising in the avian para-aortic area during ontogeny. The phenotype of these cells, expressing the cell surface molecules alpha2beta1 integrin, c-kit, thrombomucin/MEP21, HEMCAM and chL12, reflects functional properties required for cell adhesion, migration and growth factor responsiveness. Importantly, the presence of these antigens was found to correlate with the recolonization of the recipient thymus following intrathymic cell transfers. These intra-embryonic cells were also found to express the Ikaros transcription factor, the molecular function of which is considered to be prerequisite for embryonic lymphoid development.  (+info)