(1/22844) Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors.

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

(2/22844) Polarized distribution of Bcr-Abl in migrating myeloid cells and co-localization of Bcr-Abl and its target proteins.

Bcr-Abl plays a critical role in the pathogenesis of Philadelphia chromosome-positive leukemia. Although a large number of substrates and interacting proteins of Bcr-Abl have been identified, it remains unclear whether Bcr-Abl assembles multi-protein complexes and if it does where these complexes are within cells. We have investigated the localization of Bcr-Abl in 32D myeloid cells attached to the extracellular matrix. We have found that Bcr-Abl displays a polarized distribution, colocalizing with a subset of filamentous actin at trailing portions of migrating 32D cells, and localizes on the cortical F-actin and on vesicle-like structures in resting 32D cells. Deletion of the actin binding domain of Bcr-Abl (Bcr-AbI-AD) dramatically enhances the localization of Bcr-Abl on the vesicle-like structures. These distinct localization patterns of Bcr-Abl and Bcr-Abl-AD enabled us to examine the localization of Bcr-Abl substrate and interacting proteins in relation to Bcr-Abl. We found that a subset of biochemically defined target proteins of Bcr-Abl redistributed and co-localized with Bcr-Abl on F-actin and on vesicle-like structures. The co-localization of signaling proteins with Bcr-Abl at its sites of localization supports the idea that Bcr-Abl forms a multi-protein signaling complex, while the polarized distribution and vesicle-like localization of Bcr-Abl may play a role in leukemogenesis.  (+info)

(3/22844) Phenotypic analysis of human glioma cells expressing the MMAC1 tumor suppressor phosphatase.

MMAC1, also known as PTEN or TEP-1, was recently identified as a gene commonly mutated in a variety of human neoplasias. Sequence analysis revealed that MMAC1 harbored sequences similar to those found in several protein phosphatases. Subsequent studies demonstrated that MMAC1 possessed in vitro enzymatic activity similar to that exhibited by dual specificity phosphatases. To characterize the potential cellular functions of MMAC1, we expressed wild-type and several mutant variants of MMAC1 in the human glioma cell line, U373, that lacks endogenous expression. While expression of wild-type MMAC1 in these cells significantly reduced their growth rate and saturation density, expression of enzymatically inactive MMAC1 significantly enhanced growth in soft agar. Our observations indicate that while wild-type MMAC1 exhibits activities compatible with its proposed role as a tumor suppressor, cellular expression of MMAC1 containing mutations in the catalytic domain may yield protein products that enhance transformation characteristics.  (+info)

(4/22844) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB.

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)

(5/22844) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells.

PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  (+info)

(6/22844) Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins.

The present study investigated the effects of sustained hydrostatic pressure (SHP; up to 4 cm H2O) on human umbilical vein endothelial cell (HUVEC) proliferation, focal adhesion plaque (FAP) organization, and integrin expression. Exposure of HUVECs to SHP stimulated cell proliferation and a selective increase in the expression of integrin subunit alphaV. The increase in alphaV was observed as early as 4 hours after exposure to pressure and preceded detectable increases in the bromodeoxyuridine labeling index. Laser confocal microscopy studies demonstrated colocalization of the alphaV integrin to FAPs. The individual FAPs in pressure-treated cells demonstrated a reduced area and increased aspect ratio and were localized to both peripheral and more central regions of the cells, in contrast to the predilection for the cell periphery in cells maintained under control pressure conditions. The pressure-induced changes in alphaV distribution had functional consequences on the cells: adhesivity of the cells to vitronectin was increased, and alphaV antagonists blocked the pressure-induced proliferative response. Thus, the present study suggests a role for alphaV integrins in the mechanotransduction of pressure by endothelial cells.  (+info)

(7/22844) Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers.

A fluorimetric multi-parameter cell sensor at the single cell level is presented which makes it possible to observe the physiological behavior of different cell lines, different physiological parameters, and statistical data at the same time. Different cell types were immobilized at predefined positions with high accuracy using optical tweezers and adhesion promoting surface layers. The process is applicable to both adherent and non-adherent cells. Coating of the immobilization area with mussel adhesive protein was shown to be essential for the process. Intracellular proton and calcium concentrations in different cell classes were simultaneously imaged and the specific activation of T lymphocytes was demonstrated. This method should be especially useful for drug screening due to the small sample volume and high information density.  (+info)

(8/22844) Cell adhesion regulates the interaction between the docking protein p130(Cas) and the 14-3-3 proteins.

Integrin ligand binding induces a signaling complex formation via the direct association of the docking protein p130(Cas) (Cas) with diverse molecules. We report here that the 14-3-3zeta protein interacts with Cas in the yeast two-hybrid assay. We also found that the two proteins associate in mammalian cells and that this interaction takes place in a phosphoserine-dependent manner, because treatment of Cas with a serine phosphatase greatly reduced its ability to bind 14-3-3zeta. Furthermore, the Cas-14-3-3zeta interaction was found to be regulated by integrin-mediated cell adhesion. Thus, when cells are detached from the extracellular matrix, the binding of Cas to 14-3-3zeta is greatly diminished, whereas replating the cells onto fibronectin rapidly induces the association. Consistent with these results, we found that the subcellular localization of Cas and 14-3-3 is also regulated by integrin ligand binding and that the two proteins display a significant co-localization during cell attachment to the extracellular matrix. In conclusion, our results demonstrate that 14-3-3 proteins participate in integrin-activated signaling pathways through their interaction with Cas, which, in turn, may contribute to important biological responses regulated by cell adhesion to the extracellular matrix.  (+info)