Regulation of phosphatidylglycerophosphate synthase by inositol in Saccharomyces cerevisiae is not at the level of PGS1 mRNA abundance. (9/102)

Phosphatidylglycerophosphate synthase catalyzes the committed step in the synthesis of the mitochondrial phospholipid cardiolipin. We showed previously that phosphatidylglycerophosphate synthase activity in Saccharomyces cerevisiae is increased in conditions favoring mitochondrial development and during growth in the absence of inositol. Interestingly, the regulatory effects of inositol were not altered in ino2, ino4, or opi1 mutants suggesting that regulation in response to inositol is not at the level of gene transcription. We report here that steady state mRNA levels of the PGS1 gene, which encodes phosphatidylglycerophosphate synthase, were not altered by inositol or choline. Growth in the presence of the inositol-depleting drug valproate led to an increase in phosphatidylglycerophosphate synthase activity unaccompanied by increased PGS1 mRNA. PGS1 mRNA abundance was not decreased in ino2 or ino4 mutants and was unaffected in an opi1 mutant. Therefore, regulation of phosphatidylglycerophosphate synthase by inositol is not mediated at the level of mRNA abundance and does not require the INO2-INO4-OPI1 regulatory circuit. PGS1 was increased in glycerol/ethanol compared with glucose media and was maximally expressed as cells entered the stationary phase. Deletion of the mitochondrial genome did not affect PGS1 expression. Thus, whereas inositol controls phosphatidylglycerophosphate synthase activity, regulation of PGS1 expression occurs primarily in response to mitochondrial development cues.  (+info)

Ca2+-dependent phosphatidylserine synthesis in immature and mature starfish oocytes. (10/102)

We found that in starfish oocytes two different enzymes, phosphatidylserine synthase-1 (PSS1) and -2 (PSS2), which synthesize phosphatidylserine by a base-exchange reaction, are present. We studied phosphatidylserine synthesis in immature oocytes which still contain the nucleus (germinal vesicles) and in mature cells, in which the re-initiation of the meiotic cycle induced by the hormone 1-methyladenine led to structural changes in the endoplasmic reticulum, to the disappearance of the nuclear envelope and to the intermixing of the nucleoplasm with the cytoplasm. It was found that the levels of PSS1 and PSS2 transcripts were higher in immature and mature oocytes, respectively. The level of the expressed PSS2 protein, higher than that of PSS1, was not influenced by the maturation process, whereas the level of PSS1 protein was higher in immature than in mature oocytes. Serine incorporation into phosphatidylserine was enhanced in immature oocytes. The depletion of calcium stores by thapsigargin resulted in 50% lowering of phosphatidylserine synthesis. We suggest that changes in phosphatidylserine synthesis may be affected by the release of calcium stored in the nuclear envelope and in the endoplasmic reticulum, the membranes that undergo disintegration and fragmentation during meiosis. The reason for the greater synthesis of PS may be the higher level of expression of PSS1 in immature oocytes.  (+info)

Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. (11/102)

A 34 base-pair (bp) fragment spanning sequences -154 to -120 of the promoter of the CHO1 gene (structural gene for phosphatidylserine synthase) from the yeast Saccharomyces cerevisiae has been shown to place transcription of a promoter-less Escherichia coli lacZ gene under control of the phospholipid precursors inositol and choline. Furthermore, in deletion experiments the CHO1 UASINO was localized to sequences between -151 and -123 of the CHO1 promoter. A nine bp sequence was identified in the promoter region of the CHO1 gene that shares an eight out of nine bp match with a sequence (consensus 5' ATGTGAAAT 3') that is repeated a total of 23 times upstream from several coregulated phospholipid biosynthetic genes. This sequence is contained within the -151 to -123 region to which the CHO1 UAS has been localized. The nine bp repeated element is believed to be involved in the control of phospholipid biosynthetic gene transcription in response to changing levels of inositol and choline in the growth medium. This control has been shown to require activities encoded by the products of the three regulatory genes: INO2, INO4, and OPI1. A mutation in any of these regulatory genes results in aberrant CHO1-lacZ gene regulation, and affects regulation of the construct containing the 34 bp (-154 to -120) CHO1 fragment demonstrating that the regulatory signal generated by these genes interacts with the 5' end of the CHO1 gene.  (+info)

Regulation of CDP-diacylglycerol synthesis and utilization by inositol and choline in Schizosaccharomyces pombe. (12/102)

CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eucaryotic phospholipid biosynthesis and could be a key regulatory site in phospholipid metabolism. Therefore, we examined the effects of growth phase, phospholipid precursors, and the disruption of phosphatidylcholine (PC) synthesis on the membrane-associated phospholipid biosynthetic enzymes CDP-DG synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase in cell extracts of the fission yeast Schizosaccharomyces pombe. In complete synthetic medium containing inositol, maximal expression of CDP-DG synthase, PGP synthase, PI synthase, and PS synthase in wild-type cells occurred in the exponential phase of growth and decreased two- to fourfold in the stationary phase of growth. In cells starved for inositol, this decrease in PGP synthase, PI synthase, and PS synthase expression was not observed. Starvation for inositol resulted in a twofold derepression of PGP synthase and PS synthase expression, while PI synthase expression decreased initially and then remained constant. Upon the addition of inositol to inositol-starved cells, there was a rapid and continued increase in PI synthase expression. We examined expression of these enzymes in cho2 and cho1 mutants, which are blocked in the methylation pathway for synthesis of PC. Choline starvation resulted in a decrease in PS synthase and CDP-DG synthase expression in cho1 but not cho2 cells. Expression of PGP synthase and PI synthase was not affected by choline starvation. Inositol starvation resulted in a 1.7-fold derepression of PGP synthase expression in cho2 but not cho1 cells when PC was synthesized. PS synthase expression was not depressed, while CDP-DG synthase and PI synthase expression decreased in cho2 and cho1 cells in the absence of inositol. These results demonstrate that (i) CDP-DG synthase, PGP synthase, PI synthase, and PS synthase are similarly regulated by growth phase; (ii) inositol affects the expression of PGP synthase, PI synthase, and PS synthase; (iii) disruption of the methylation pathway results in aberrant patterns of regulation of growth phase and phospholipid precursors. Important differences between S. pombe and Saccharomyces cerevisiae with regard to regulation of these enzymes are discussed.  (+info)

Pathways for phosphatidylcholine biosynthesis in bacteria. (13/102)

Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes with important structural and signalling functions. Although many prokaryotes lack PC, it can be found in significant amounts in membranes of rather diverse bacteria. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (PCS) pathway. In the methylation pathway, phosphatidylethanolamine is methylated three times to yield PC, in reactions catalysed by one or several phospholipid N-methyltransferases (PMTs). In the PCS pathway, choline is condensed directly with CDP-diacylglyceride to form PC in a reaction catalysed by PCS. Using cell-free extracts, it was demonstrated that Sinorhizobium meliloti, Agrobacterium tumefaciens, Rhizobium leguminosarum, Bradyrhizobium japonicum, Mesorhizobium loti and Legionella pneumophila have both PMT and PCS activities. In addition, Rhodobacter sphaeroides has PMT activity and Brucella melitensis, Pseudomonas aeruginosa and Borrelia burgdorferi have PCS activities. Genes from M. loti and L. pneumophila encoding a Pmt or a Pcs activity and the genes from P. aeruginosa and Borrelia burgdorferi responsible for Pcs activity have been identified. Based on these functional assignments and on genomic data, one might predict that if bacteria contain PC as a membrane lipid, they usually possess both bacterial pathways for PC biosynthesis. However, important pathogens such as Brucella melitensis, P. aeruginosa and Borrelia burgdorferi seem to be exceptional as they possess only the PCS pathway for PC formation.  (+info)

Regulation of phospholipid synthesis in the yeast cki1Delta eki1Delta mutant defective in the Kennedy pathway. The Cho1-encoded phosphatidylserine synthase is regulated by mRNA stability. (14/102)

In the yeast Saccharomyces cerevisiae, the most abundant phospholipid phosphatidylcholine is synthesized by the complementary CDP-diacylglycerol and Kennedy pathways. Using a cki1Delta eki1Delta mutant defective in choline kinase and ethanolamine kinase, we examined the consequences of a block in the Kennedy pathway on the regulation of phosphatidylcholine synthesis by the CDP-diacylglycerol pathway. The cki1Delta eki1Delta mutant exhibited increases in the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine via the CDP-diacylglycerol pathway. The increase in phospholipid synthesis correlated with increased activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. However, other enzyme activities, including phosphatidylinositol synthase and phosphatidate phosphatase, were not affected in the cki1Delta eki1Delta mutant. For phosphatidylserine synthase, the enzyme catalyzing the committed step in the pathway, activity was regulated by increases in the levels of mRNA and protein. Decay analysis of CHO1 mRNA indicated that a dramatic increase in transcript stability was a major component responsible for the elevated level of phosphatidylserine synthase. These results revealed a novel mechanism that controls phospholipid synthesis in yeast.  (+info)

Externalization of phosphatidylserine during apoptosis does not specifically require either isoform of phosphatidylserine synthase. (15/102)

Phosphatidylserine (PtdSer) is made in mammalian cells by two PtdSer synthases, PSS1 and PSS2. In the plasma membrane PtdSer is normally localized on the inner leaflet but undergoes transbilayer movement during apoptosis and becomes exposed on the cell surface. We induced apoptosis with staurosporine in four Chinese hamster ovary (CHO) cell lines that are deficient in PSS1 and/or PSS2 to determine if PtdSer generated by either of these enzymes is required for externalization on the cell surface during apoptosis. The onset of apoptosis was confirmed by the appearance of morphological changes and DNA fragmentation while the plasma membrane remained largely intact. In all cell lines, regardless of their content of PSS1 and/or PSS2, apoptosis occurred to approximately the same extent, and within approximately the same time frame, as in parental CHO-K1 cells. The exposure of PtdSer on the cell surface was assessed by annexin V labeling and flow cytometry. Cells that were deficient in either PSS1 or PSS2, as well as cells that were deficient in both PSS1 and PSS2, externalized normal amounts of PtdSer. Our study demonstrates, that reduction of in vitro serine-exchange activity, even by 97%, does not restrict the externalization of PtdSer during apoptosis. Moreover, a normal level of expression of PSS1 and/or PSS2 is not required for generating the pool of PtdSer externalized during apoptosis.  (+info)

Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. (16/102)

In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.  (+info)