Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. (17/193)

In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.  (+info)

A rac homolog is required for induction of hyphal growth in the dimorphic yeast Yarrowia lipolytica. (18/193)

Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C(2)H(2)-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica.  (+info)

Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis. (19/193)

In contrast to the CDC42 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe, the WdCDC42 gene in the human pathogenic fungus Wangiella (Exophiala) dermatitidis was found to be nonessential for cell viability. Expression of the constitutively active allele wdcdc42(G14V) at 37 degrees C induced nonpolarized growth that led to cell enlargement and multiple nucleation. The swollen cells subsequently converted into planate divided bicellular forms or multiply septated sclerotic bodies in post-log phase, when the G14V-altered protein was diminished. The wdcdc42(G14V) mutation also strongly repressed filamentous growth both in the wild-type strain and in the temperature-sensitive hyphal-form mutant Hf1. In contrast, overexpression of the dominant negative alleles wdcdc42(T19N) and wdcdc42(D120A) had no obvious effect on fungal-cell polarization. These results suggested that WdCdc42p plays a unique regulatory role in cellular morphogenesis in W. dermatitidis. Activation of this protein in response to extracellular or intracellular signals seems to commit its yeast-like cells to a phenotype transition that produces sclerotic bodies while repressing hyphal development.  (+info)

Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. (20/193)

The adaptive response to hyperosmotic stress in yeast, termed the high osmolarity glycerol (HOG) response, is mediated by two independent upstream pathways that converge on the Pbs2 MAP kinase kinase (MAPKK), leading to the activation of the Hog1 MAP kinase. One branch is dependent on the Sho1 transmembrane protein, whose primary role was found to be the binding and translocation of the Pbs2 MAPKK to the plasma membrane, and specifically to sites of polarized growth. The yeast PAK homolog Ste20 is essential for the Sho1-dependent activation of the Hog1 MAP kinase in response to severe osmotic stress. This function of Ste20 in the HOG pathway requires binding of the small GTPase Cdc42. Overexpression of Cdc42 partially complements the osmosensitivity of ste20Delta mutants, perhaps by activating another PAK-like kinase, while a dominant-negative Cdc42 mutant inhibited signaling through the SHO1 branch of the HOG pathway. Since activated Cdc42 translocates Ste20 to sites of polarized growth, the upstream and downstream elements of the HOG pathway are brought together through the membrane targeting function of Sho1 and Cdc42.  (+info)

Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. (21/193)

CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20DeltaCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of the cdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p.  (+info)

Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. (22/193)

We present the 1.9 A resolution crystal structure of the catalytic domain of Gyp1p, a specific GTPase activating protein (GAP) for Ypt proteins, the yeast homologues of Rab proteins, which are involved in vesicular transport. Gyp1p is a member of a large family of eukaryotic proteins with shared sequence motifs. Previously, no structural information was available for any member of this class of proteins. The GAP domain of Gyp1p was found to be fully alpha-helical. However, the observed fold does not superimpose with other alpha-helical GAPs (e.g. Ras- and Cdc42/Rho-GAP). The conserved and catalytically crucial arginine residue, identified by mutational analysis, is in a comparable position to the arginine finger in the Ras- and Cdc42-GAPs, suggesting that Gyp1p utilizes an arginine finger in the GAP reaction, in analogy to Ras- and Cdc42-GAPs. A model for the interaction between Gyp1p and the Ypt protein satisfying biochemical data is given.  (+info)

The Cdc42p GTPase and its regulators Nrf1p and Scd1p are involved in endocytic trafficking in the fission yeast Schizosaccharomyces pombe. (23/193)

Nrf1p was first identified in a screen for negative regulators of the Cdc42p GTPase. Overexpression of Nrf1p resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology and abnormal vacuolar phenotypes including an increase in vacuolar fusion. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to vacuolar membranes and GFP-Nrf1p vacuolar localization depended on Scd1p, the Schizosaccharomyces pombe homolog of the Cdc24p guanine nucleotide exchange factor. In this study, site-directed mutagenesis was conducted on Nrf1p to determine its functional domains. Mutations in the three putative transmembrane domains resulted in mislocalization of GFP-Nrf1p and an inability to induce lethality, suggesting a loss of function. Mutations in the second extramembranous loop of Nrf1p also resulted in a loss of function and altered the ability of GFP-Nrf1p to localize to vacuolar membranes. Analysis of Deltanrf1 and Deltascd1 mutants revealed defects in endocytosis. In addition, overexpression of constitutively active Cdc42(G12V)p resulted in an increase in endocytosis and an ability to rescue the endocytic defects in Deltanrf1 and Deltascd1 cells. These data are consistent with Nrf1p and Scd1p being necessary for efficient endocytosis, possibly through the regulation of Cdc42p.  (+info)

Saccharomyces cerevisiae cdc42p GTPase is involved in preventing the recurrence of bud emergence during the cell cycle. (24/193)

The Saccharomyces cerevisiae Cdc42p GTPase interacts with multiple regulators and downstream effectors through an approximately 25-amino-acid effector domain. Four effector domain mutations, Y32K, F37A, D38E, and Y40C, were introduced into Cdc42p and characterized for their effects on these interactions. Each mutant protein showed differential interactions with a number of downstream effectors and regulators and various levels of functionality. Specifically, Cdc42(D38E)p showed reduced interactions with the Cla4p p21-activated protein kinase and the Bem3p GTPase-activating protein and cdc42(D38E) was the only mutant allele able to complement the Deltacdc42 null mutant. However, the mutant protein was only partially functional, as indicated by a temperature-dependent multibudded phenotype seen in conjunction with defects in both septin ring localization and activation of the Swe1p-dependent morphogenetic checkpoint. Further analysis of this mutant suggested that the multiple buds emerged consecutively with a premature termination of bud enlargement preceding the appearance of the next bud. Cortical actin, the septin ring, Cla4p-green fluorescent protein (GFP), and GFP-Cdc24p all predominantly localized to one bud at a time per multibudded cell. These data suggest that Cdc42(D38E)p triggers a morphogenetic defect post-bud emergence, leading to cessation of bud growth and reorganization of the budding machinery to another random budding site, indicating that Cdc42p is involved in prevention of the initiation of supernumerary buds during the cell cycle.  (+info)