Trichostatin A up-regulates human papillomavirus type 11 upstream regulatory region-E6 promoter activity in undifferentiated primary human keratinocytes. (41/2395)

Human papillomavirus (HPV) gene expression in squamous epithelia is differentiation dependent in benign patient lesions and in organotypic raft cultures of primary human keratinocytes (PHKs). Using the lacZ reporter in raft cultures, we previously showed that this transcriptional regulation of the HPV type 11 (HPV-11) enhancer-promoter located in the upstream regulatory region (URR) appears to have resulted from coordination between the transcription transactivators AP1, Oct1, and Sp1 in differentiated upper strata and the repressor C/EBP in proliferating basal cells. We report here that trichostatin A, a specific inhibitor of histone deacetylase, dramatically stimulated reporter gene activity from the wild-type HPV-11 URR or the C/EBP mutation in PHKs grown in undifferentiated submerged cultures. In epithelial raft cultures, up-regulation occurred predominantly in basal and parabasal strata; this effect was promoter specific, as expression of the lacZ reporter gene driven by the murine leukemia virus long terminal repeat (LTR), the keratin 14 promoter, or the involucrin promoter was not altered, nor was expression of endogenous keratin 10 and profilaggrin affected. However, the responses were not cell type or species specific, as identical results were observed for both HPV-11 URR-lacZ and LTR-lacZ in murine retrovirus producer cell lines of fibroblast origin.  (+info)

Ras regulates the association of serum response factor and CCAAT/enhancer-binding protein beta. (42/2395)

The serum response element (SRE) is a promoter element essential for transcriptional activation of immediate early genes, such as c-fos and early growth response-1, by mitogenic signals. Several transcription factors bind the SRE, including the serum response factor (SRF), the ternary complex factor, and the CCAAT/enhancer-binding protein beta (C/EBPbeta). The C/EBPbeta mRNA encodes three translation products of 38, 35, and 20 kDa. p35-C/EBPbeta activates transcription of the SRE in an SRF-dependent fashion, whereas p20-C/EBPbeta, which initiates at an internal in-frame methionine, lacks a transactivation domain and inhibits transcription. We show that SRF and C/EBPbeta interact in vivo through the DNA binding domain of SRF and the C terminus of C/EBPbeta common to p35/38 and p20. Therefore, like the ternary complex factor, C/EBPbeta may be recruited to the SRE not only by binding to the DNA, which is not a high affinity site, but also by protein-protein interactions with SRF. Strikingly, in both the mammalian two-hybrid assay and in vivo coimmunoprecipitations, the association of SRF and p35-C/EBPbeta but not p20-C/EBPbeta is dramatically stimulated by activated Ras. Furthermore, mutation of the threonine within a mitogen-activated protein kinase consensus motif in the C terminus of C/EBPbeta eliminates the response to Ras. These results suggest a new mechanism by which mitogenic signals may influence transcription activity of the SRE by selectively promoting protein-protein interactions between SRF and the transactivator p35-C/EBPbeta.  (+info)

YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. (43/2395)

Ying Yang 1 (YY1) is shown to bind to the proximal promoters of the genes encoding 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, farnesyl diphosphate (FPP) synthase, and the low density lipoprotein (LDL) receptor. To investigate the potential effect of YY1 on the expression of SREBP-responsive genes, HepG2 cells were transiently transfected with luciferase reporter constructs under the control of promoters derived from either HMG-CoA synthase, FPP synthase, or the LDL receptor genes. The luciferase activity of each construct increased when HepG2 cells were incubated in lipid-depleted media or when the cells were cotransfected with a plasmid encoding mature sterol regulatory element-binding protein (SREBP)-1a. In each case, the increase in luciferase activity was attenuated by coexpression of wild-type YY1 but not by coexpression of mutant YY1 proteins that are known to be defective in either DNA binding or in modulating transcription of other known YY1-responsive genes. In contrast, incubation of cells in lipid-depleted media resulted in induction of an HMG-CoA reductase promoter-luciferase construct by a process that was unaffected by coexpression of wild-type YY1. Electromobility shift assays were used to demonstrate that the proximal promoters of the HMG-CoA synthase, FPP synthase, and the LDL receptor contain YY1 binding sites and that YY1 displaced nuclear factor Y from the promoter of the HMG-CoA synthase gene. We conclude that YY1 inhibits the transcription of specific SREBP-dependent genes and that, in the case of the HMG-CoA synthase gene, this involves displacement of nuclear factor Y from the promoter. We hypothesize that YY1 plays a regulatory role in the transcriptional regulation of specific SREBP-responsive genes.  (+info)

The C/EBP family of transcription factors in the liver and other organs. (44/2395)

Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors are pivotal regulators of liver functions such as nutrient metabolism and its control by hormones, acute-phase response and liver regeneration. Recent progress in clarification of regulatory mechanisms for the C/EBP family members gives insight into understanding the liver functions at the molecular level.  (+info)

The interaction between the forkhead thyroid transcription factor TTF-2 and the constitutive factor CTF/NF-1 is required for efficient hormonal regulation of the thyroperoxidase gene transcription. (45/2395)

The forkhead thyroid-specific transcription factor TTF-2 is the main mediator of thyrotropin and insulin regulation of thyroperoxidase (TPO) gene expression. This function depends on multimerization and specific orientation of its DNA-binding site, suggesting that TTF-2 is part of a complex interaction network within the TPO promoter. This was confirmed by transfection experiments and by protein-DNA interaction studies, which demonstrated that CTF/NF1 proteins bind 10 base pairs upstream of the TTF-2-binding site to enhance its action in hormone-induced expression of the TPO gene. GST pull-down assays showed that TTF-2 physically interacts with CTF/NF1 proteins. In addition, we demonstrate that increasing the distance between both transcription factors binding sites by base pair insertion results in loss of promoter activity and in a drastic decrease on the ability of the promoter to respond to the hormones. CTF/NF1 is a family of transcription factors that contributes to constitutive and cell-type specific gene expression. Originally identified as factors implicated in the replication of adenovirus, this group of proteins (CTF/NF1-A, -B, -C, and -X) is now known to be involved in the regulation of several genes. In contrast to other reports regarding the involvement of these proteins in inducible gene expression, we show here that members of this family of transcription factors are regulated by hormones. With the use of specific CTF/NF1 DNA probes and antibodies we demonstrate that CTF/NF1-C is a thyrotropin-, cAMP-, and insulin-inducible protein. Thus CTF/NF1 proteins do not only mediate hormone-induced gene expression cooperating with TTF-2, but are themselves hormonally regulated. All these findings are clearly of important value in understanding the mechanisms governing the transcription regulation of RNA polymerase II promoters, which often contain binding sites for multiple transcription factors.  (+info)

Urea-associated oxidative stress and Gadd153/CHOP induction. (46/2395)

Urea treatment (100-300 mM) increased expression of the oxidative stress-responsive transcription factor, Gadd153/CHOP, at the mRNA and protein levels (at >/=4 h) in renal medullary mIMCD3 cells in culture, whereas other solutes did not. Expression of the related protein, CCAAT/enhancer-binding protein (C/EBP-beta), was not affected, nor was expression of the sensor of endoplasmic reticulum stress, grp78. Urea modestly increased Gadd153 transcription by reporter gene analysis but failed to influence Gadd153 mRNA stability. Importantly, upregulation of Gadd153 mRNA and protein expression by urea was antioxidant sensitive. Accordingly, urea treatment was associated with oxidative stress, as quantitated by intracellular reduced glutathione content in mIMCD3 cells. In addition, antioxidant treatment partially inhibited the ability of urea to activate transcription of an Egr-1 luciferase reporter gene. Therefore oxidative stress represents a novel solute-signaling pathway in the kidney medulla and, potentially, in other tissues.  (+info)

CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. (47/2395)

The CCAAT/enhancer binding protein epsilon (C/EBPepsilon) is a nuclear transcription factor expressed predominantly in myeloid cells and implicated as a potential regulator of myeloid differentiation. We show that it was rapidly induced in the acute promyelocytic leukemia (APL) cell line NB4 during granulocytic differentiation after exposure to retinoic acid (RA). Our data suggest that induction of C/EBPepsilon expression was through the retinoic acid receptor alpha (RARalpha) pathway. Reporter gene studies showed that C/EBPepsilon promoter/enhancer activity increased in a retinoid-dependent fashion via the retinoic acid response element (RARE) present in the promoter region of C/EBPepsilon. The RA-induced expression of C/EBPepsilon markedly increased in U937 myelomonoblasts that were induced to express promyelocytic leukemia/RARalpha (PML/RARalpha), but not in those induced to express promyelocytic leukemia zinc finger/RARalpha (PLZF/RARalpha). In retinoid-resistant APL cell lines, C/EBPepsilon either is not induced or is induced only at very high concentrations of RA (>/=10(-6) M). In addition, forced expression of C/EBPepsilon in the U937 myelomonoblastic leukemia cells mimicked terminal granulocytic differentiation, including morphologic changes, increased CD11b/CD66b expression, and induction of secondary granule protein expression. Our data strongly suggest that C/EBPepsilon is a downstream target gene responsible for RA-induced granulocytic differentiation of APL cells.  (+info)

Expression of the rat liver carnitine palmitoyltransferase I (CPT-Ialpha) gene is regulated by Sp1 and nuclear factor Y: chromosomal localization and promoter characterization. (48/2395)

Carnitine palmitoyltransferase (CPT)-I catalyses the transfer of long-chain fatty acids from CoA to carnitine for translocation across the mitochondrial inner membrane. Expression of the 'liver' isoform of the CPT-I gene (CPT-Ialpha) is subject to developmental, hormonal and tissue-specific regulation. To understand the basis for control of CPT-Ialpha gene expression, we have characterized the proximal promoter of the CPT-Ialpha gene. Here, we report the sequence of 6839 base pairs of the promoter and the localization of the rat CPT-Ialpha gene to region q43 on chromosome 1. Our studies show that the first 200 base pairs of the promoter are sufficient to drive transcription of the CPT-Ialpha gene. Within this region are two sites that bind both Sp1 and Sp3 transcription factors. In addition, nuclear factor Y (NF-Y) binds the proximal promoter. Mutation at the Sp1 or NF-Y sites severely decreases transcription from the CPT-Ialpha promoter. Other protein binding sites were identified within the first 200 base pairs of the promoter by DNase I footprinting, and these elements contribute to CPT-Ialpha gene expression. Our studies demonstrate that CPT-Ialpha is a TATA-less gene which utilizes NF-Y and Sp proteins to drive basal expression.  (+info)