Cell cycle regulator phosphorylation stimulates two distinct modes of binding at a chromosome replication origin. (17/444)

In Caulobacter crescentus, the global response regulator CtrA controls chromosome replication and determines the fate of two different cell progenies. Previous studies proposed that CtrA represses replication by binding to five sites, designated [a-e], in the replication origin. We show that phosphorylated CtrA binds sites [a-e] with 35- to 100-fold lower K(d) values than unphosphorylated CtrA. CtrA phosphorylation stimulates two distinct modes of binding to the replication origin. Phosphorylation stimulates weak intrinsic protein-protein cooperation between half-sites and does not stimulate CtrA-P binding unless protein-DNA contacts are made at both half-sites. CtrA phosphorylation also stimulates cooperative binding between complete sites [a] and [b]. However, binding to each of the other CtrA-binding sites [c], [d] and [e] is completely independent and suggests a modular organization of replication control by CtrA. We therefore propose a model where a phosphorelay targets separate biochemical activities inside the replication origin through both cooperative and independent CtrA-binding sites.  (+info)

Secretion of the Caulobacter crescentus S-layer protein: further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins. (18/444)

The secretion signal of the Caulobacter crescentus S-layer protein (RsaA) was localized to the C-terminal 82 amino acids of the molecule. Protein yield studies showed that 336 or 242 C-terminal residues of RsaA mediated secretion of >50 mg of a cellulase passenger protein per liter to the culture fluids.  (+info)

Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. (19/444)

Pilus assembly in CAULOBACTER: crescentus occurs during a short period of the cell cycle and pili are only present at the flagellar pole of the swarmer cell. Here we report a novel assay to visualize pili by light microscopy that led to the purification of CAULOBACTER: pili and the isolation of a cluster of seven genes, including the major pilin subunit gene pilA. This gene cluster encodes a novel group of pilus assembly proteins. We have shown that the pilA promoter is activated late in the cell cycle and that transcription of the pilin subunit plays an important role in the timing of pilus assembly. pilA transcription is regulated by the global two-component response regulator CtrA, which is essential for the expression of multiple cell cycle events, providing a direct link between assembly of the pilus organelle and bacterial cell cycle control.  (+info)

tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. (20/444)

A general mechanism in bacteria to rescue stalled ribosomes and to clear the cell of incomplete polypeptides involves an RNA species, tmRNA (SsrA), which functions as both a tRNA and an mRNA. This RNA encodes a peptide tag that is incorporated at the end of the aberrant polypeptide and targets it for proteolysis. We have identified a circularly permuted version of the tmRNA gene in alpha-proteobacteria as well as in a lineage of cyanobacteria. The genes in these two groups seem to have arisen from two independent permutation events. As a result of the altered genetic structure, these tmRNAs are composed of two distinct RNA molecules. The mature two-piece tmRNAs are predicted to have a tRNA-like domain and an mRNA-like domain similar to those of standard one-piece tmRNAs, with a break located in the loop containing the tag reading frame. A related sequence was found in the mitochondrial genome of Reclinomonas americana, but only the tRNA-like portion is retained. Although several sequence and structural motifs that are conserved among one-piece tmRNAs have been lost, the alpha-proteobacterium Caulobacter crescentus produces a functional two-piece tmRNA.  (+info)

A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. (21/444)

The Caulobacter crescentus flagellar filament is assembled from multiple flagellin proteins that are encoded by six genes. The amino acid sequences of the FljJ and FljL flagellins are divergent from those of the other four flagellins. Since these flagellins are the first to be assembled in the flagellar filament, one or both might have specialized to facilitate the initiation of filament assembly.  (+info)

CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. (22/444)

Coordination of DNA replication and cell division is essential in order to ensure that progeny cells inherit a full copy of the genome. Caulobacter crescentus divides asymmetrically to produce a non-replicating swarmer cell and a replicating stalked cell. The global response regulator CtrA coordinates DNA replication and cell division by repressing replication initiation and transcription of the early cell division gene ftsZ in swarmer cells. We show that CtrA also mediates a DNA replication checkpoint of cell division by regulating the late cell division genes ftsQ and ftsA. CtrA activates transcription of the P(QA) promoter that co-transcribes ftsQA, thus regulating the ordered expression of early and late cell division proteins. Cells inhibited for DNA replication are unable to complete cell division. We show that CtrA is not synthesized in pre-divisional cells in which replication has been inhibited, preventing the transcription of P(QA) and cell division. Replication inhibition prevents the activation of the ctrA P2 promoter, which normally depends on CtrA phosphorylation. This suggests the possibility that CtrA phosphorylation may be affected by replication inhibition.  (+info)

The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. (23/444)

The Caulobacter crescentus GTP binding protein CgtA is a member of the Obg/GTP1 subfamily of monomeric GTP binding proteins. In vitro, CgtA displays moderate affinity for both GDP and GTP, and rapid exchange rate constants for either nucleotide. One possible explanation for the observed rapid guanine nucleotide exchange [corrected] rates is that CgtA is a bimodal protein with a C-terminal GTP binding domain and an N-terminal GEF domain. In this study we demonstrate that although the N-terminus of CgtA is required for function in vivo, this domain plays no significant role in the guanine nucleotide binding, exchange or GTPase activity.  (+info)

Global analysis of the genetic network controlling a bacterial cell cycle. (24/444)

This report presents full-genome evidence that bacterial cells use discrete transcription patterns to control cell cycle progression. Global transcription analysis of synchronized Caulobacter crescentus cells was used to identify 553 genes (19% of the genome) whose messenger RNA levels varied as a function of the cell cycle. We conclude that in bacteria, as in yeast, (i) genes involved in a given cell function are activated at the time of execution of that function, (ii) genes encoding proteins that function in complexes are coexpressed, and (iii) temporal cascades of gene expression control multiprotein structure biogenesis. A single regulatory factor, the CtrA member of the two-component signal transduction family, is directly or indirectly involved in the control of 26% of the cell cycle-regulated genes.  (+info)