Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. (73/230)

A small anaerobically induced tomato transcription factor was isolated from a subtractive library. This factor, designated ABZ1 (anaerobic basic leucine zipper), is anaerobically induced in fruits, leaves and roots and encodes a nuclear localized protein. ABZ1 shares close structural and sequence homology with the S-family of small basic leucine zipper (bZIP) transcription factors that are implicated in stress response. Nuclear localization of ABZ1 is mediated by the basic region and occurs under normoxic conditions. ABZ1 binds to G-box-like target sites as a dimer. Binding can be abolished by heterodimerization with a truncated protein retaining the leucine zipper but lacking the DNA binding domain. The protein binds in a sequence specific manner to the CaMV 35S promoter which is down regulated when ABZ1 is coexpressed. This correlates with the anaerobic down regulation of the 35S promoter in tomato and tobacco. These results may suggest that small bZIP proteins are involved in the negative regulation of gene expression under anaerobic conditions.  (+info)

Self-interaction of ORF II protein through the leucine zipper is essential for Soybean chlorotic mottle virus infectivity. (74/230)

The ORF II protein (PII) of Soybean chlorotic mottle virus (SbCMV) is essential for the virus life cycle. We investigated the interactions of SbCMV PII with itself and with other essential virus proteins using a Gal4-based yeast two-hybrid system. PII interacted only with itself and not with any other virus proteins. The PII-PII interaction was confirmed by a Sos-based yeast two-hybrid system and a far-western analysis. Deletion mutagenesis mapped the self-interacting domain to the C-terminal 48 amino acids (amino acids 154-201), which contain two putative leucine zipper motifs. Introduction of amino acid substitutions to leucine/isoleucine in zipper sequences prevented the PII-PII interaction and abolished the infectivity of SbCMV. These results revealed that the self-interaction of PII through a leucine zipper is necessary for virus infection.  (+info)

Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. (75/230)

Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5) to 4 x 10(-5). This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.  (+info)

The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. (76/230)

The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal alpha-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the alpha-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.  (+info)

The plant gene CCD1 selectively blocks cell death during the hypersensitive response to Cauliflower mosaic virus infection. (77/230)

The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.  (+info)

A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. (78/230)

The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells.  (+info)

Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. (79/230)

Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.  (+info)

Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004). (80/230)

In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001) Nature 414, 541-543]. This region is part of the Mesoamerican center of origin for maize (Zea mays L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from Agrobacterium tumefaciens. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico.  (+info)