Conditional cell ablation by stringent tetracycline-dependent regulation of barnase in mammalian cells.
(33/230)
Conditional expression of suicide genes in vivo has a wide range of applications in biological research and requires a minimal basal promoter activity in the uninduced state. To reduce basal activity of tetracycline (tc)-inducible target promoters we combined synthetic tet operators in varying numbers with a core promoter derived from the plant viral 35S promoter. An optimized promoter, P(TF), was found to exert a stringent regulation of luciferase in combination with tTA and rtTA in different mammalian cell lines. We linked P(TF) to the barnase gene, coding for a highly active RNase from Bacillus amyloliquefaciens. Stable cell clones expressing barnase under control of tTA exerted cell death only after tc withdrawal, correlating with a 10-fold induction of barnase mRNA expression. Directing tTA expression through a neuron-specific enolase promoter (P(NSE)) leads to barnase expression and cell death in neuronal cells after tc withdrawal. Taken together, our data demonstrate that a stringent control of barnase expression in the uninduced state improves cell ablation studies, as high frequencies of transgene propagation in both cell lines and in transgenic mice are observed. (+info)
Biochemical characterization of the helper component of Cauliflower mosaic virus.
(34/230)
The helper component of Cauliflower mosaic virus is encoded by viral gene II. This protein (P2) is dispensable for virus replication but required for aphid transmission. The purification of P2 has never been reported, and hence its biochemical properties are largely unknown. We produced the P2 protein via a recombinant baculovirus with a His tag fused at the N terminus. The fusion protein was purified by affinity chromatography in a soluble and biologically active form. Matrix-assisted laser desorption time-of-flight mass spectrometry demonstrated that P2 is not posttranslationally modified. UV circular dichroism revealed the secondary structure of P2 to be 23% alpha-helical. Most alpha-helices are suggested to be located in the C-terminal domain. Using size exclusion chromatography and aphid transmission testing, we established that the active form of P2 assembles as a huge soluble oligomer containing 200 to 300 subunits. We further showed that P2 can also polymerize as long paracrystalline filaments. We mapped P2 domains involved in P2 self-interaction, presumably through coiled-coil structures, one of which is proposed to form a parallel trimer. These regions have previously been reported to also interact with viral P3, another protein involved in aphid transmission. Possible interference between the two types of interaction is discussed with regard to the biological activity of P2. (+info)
Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis.
(35/230)
Acyl carrier protein (ACP) is a small (9 kD) acidic protein that is an essential cofactor in plant fatty acid biosynthesis. Most plants have several isoforms of ACP, some of which are expressed constitutively and others that appear to be more tissue specific. Although the critical role of ACP in fatty acid biosynthesis has been established, the role of the diverse number of isoforms has yet to be elucidated. We have generated transgenic Arabidopsis plants that express high levels of ACP-1, a seed-predominant ACP isoform, in leaf tissue under control of the cauliflower mosaic virus 35S promoter. Western and northern analysis of these plants demonstrate 3- to 8-fold increased expression of this isoform in leaf tissue, but no significant changes in seed. Analysis of the fatty acid composition of leaf tissue revealed that overexpression of ACP-1 in leaf tissue alters fatty acid composition. Significant decreases in levels of 16:3 were noted along with increases in 18:3. These findings represent the first in vivo report that overexpression of an ACP isoform results in changes in fatty acid composition in plants. (+info)
A plant viral "reinitiation" factor interacts with the host translational machinery.
(36/230)
The cauliflower mosaic virus transactivator, TAV, controls translation reinitiation of major open reading frames on polycistronic RNA. We show here that TAV function depends on its association with polysomes and eukaryotic initiation factor eIF3 in vitro and in vivo. TAV physically interacts with eIF3 and the 60S ribosomal subunit. Two proteins mediating these interactions were identified: eIF3g and 60S ribosomal protein L24. Transient expression of eIF3g and L24 in plant protoplasts strongly affects TAV-mediated reinitiation activity. We demonstrate that TAV/eIF3/40S and eIF3/TAV/60S ternary complexes form in vitro, and propose that TAV mediates efficient recruitment of eIF3 to polysomes, allowing translation of polycistronic mRNAs by reinitiation, overcoming the normal cell barriers to this process. (+info)
Polycomb repression of flowering during early plant development.
(37/230)
All plants flower late in their life cycle. For example, in Arabidopsis, the shoot undergoes a transition and produces reproductive flowers after the adult phase of vegetative growth. Much is known about genetic and environmental processes that control flowering time in mature plants. However, little is understood about the mechanisms that prevent plants from flowering much earlier during embryo and seedling development. Arabidopsis embryonic flower (emf1 and emf2) mutants flower soon after germination, suggesting that a floral repression mechanism is established in wild-type plants that prevents flowering until maturity. Here, we show that polycomb group proteins play a central role in repressing flowering early in the plant life cycle. We found that mutations in the Fertilization Independent Endosperm (FIE) polycomb gene caused the seedling shoot to produce flower-like structures and organs. Flower-like structures were also generated from the hypocotyl and root, organs not associated with reproduction. Expression of floral induction and homeotic genes was derepressed in mutant embryos and seedlings. These results suggest that FIE-mediated polycomb complexes are an essential component of a floral repression mechanism established early during plant development. (+info)
Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants.
(38/230)
Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with the notable feature that plant TS is activated through S-adenosyl-Met, a metabolite derived from Met. To investigate the regulation of this branch point, we engineered TS antisense potato (Solanum tuberosum cv Desiree) plants using the constitutive cauliflower mosaic virus 35S promoter. In leaf tissues, these transgenics exhibit a reduction of TS activity down to 6% of wild-type levels. Thr levels are reduced to 45% wild-type controls, whereas Met levels increase up to 239-fold depending on the transgenic line and environmental conditions. Increased levels of homo-Ser and homo-cysteine indicate increased carbon allocation into the aspartate pathway. In contrast to findings in Arabidopsis, increased Met content has no detectable effect on mRNA or protein levels or on the enzymatic activity of cystathionine gamma-synthase in potato. Tubers of TS antisense potato plants contain a Met level increased by a factor of 30 and no reduction in Thr. These plants offer a major biotechnological advance toward the development of crop plants with improved nutritional quality. (+info)
The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture.
(39/230)
We report here the isolation of the Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (AtSERK1) gene and we demonstrate its role during establishment of somatic embryogenesis in culture. The AtSERK1 gene is highly expressed during embryogenic cell formation in culture and during early embryogenesis. The AtSERK1 gene is first expressed in planta during megasporogenesis in the nucellus [corrected] of developing ovules, in the functional megaspore, and in all cells of the embryo sac up to fertilization. After fertilization, AtSERK1 expression is seen in all cells of the developing embryo until the heart stage. After this stage, AtSERK1 expression is no longer detectable in the embryo or in any part of the developing seed. Low expression is detected in adult vascular tissue. Ectopic expression of the full-length AtSERK1 cDNA under the control of the cauliflower mosaic virus 35S promoter did not result in any altered plant phenotype. However, seedlings that overexpressed the AtSERK1 mRNA exhibited a 3- to 4-fold increase in efficiency for initiation of somatic embryogenesis. Thus, an increased AtSERK1 level is sufficient to confer embryogenic competence in culture. (+info)
Functional analysis of tomato Pti4 in Arabidopsis.
(40/230)
Pti4 is a tomato (Lycopersicon esculentum) transcription factor that belongs to the ERF (ethylene-responsive element binding factor) family of proteins. It interacts with the Pto kinase in tomato, which confers resistance to the Pseudomonas syringae pv tomato pathogen that causes bacterial speck disease. To study the function of Pti4, transgenic Arabidopsis plants were generated that expressed tomato Pti4 driven by the strong constitutive promoters, cauliflower mosaic virus 35S and tCUP. Global gene expression analysis by Affimetric GeneChip indicated that expression of Pti4 in transgenic Arabidopsis plants induced the expression of GCC box-containing PR genes. We also demonstrated that Pti4 enhanced GCC box-mediated transcription of a reporter gene. The data suggests that tomato Pti4 could act as a transcriptional activator to regulate expression of GCC box-containing genes. Furthermore, we show that the expression of tomato Pti4 in transgenic Arabidopsis plants produced a phenotype similar to that seen in plants treated with ethylene, thus providing evidence that the Pti4 gene is involved in the regulation of a subset of ethylene-responsive genes containing the GCC box. (+info)