Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the cauliflower mosaic virus movement protein. (17/230)

The movement protein (MP) of cauliflower mosaic virus (CaMV) is a multifunctional protein that potentiates the cell-to-cell and long distance movement of the virus. Functional domains in the CaMV MP were determined by analyzing deletions in green fluorescent protein (GFP)-MP fusions transfected into Arabidopsis thaliana leaf protoplasts. GFP-MP accumulated at fluorescent foci at the cell periphery and in tubular structures extending from the protoplast surface. A region located near the center of MP was required for targeting GFP-MP to foci, whereas a larger region extending nearly to the N-terminus was needed for tubule formation. Cytoskeletal assembly inhibitors did not disrupt tubule formation or the accumulation of GFP-MP at foci, but brefeldin A, which disrupts the plant cell endomembrane system, did interfere with the formation of tubules but not foci.  (+info)

The complexities of genome analysis, the Retroid agent perspective. (18/230)

MOTIVATION: The sequences of Retroid agents from a wide diversity of organisms constitute the largest set of complete genomes currently available for the study of genomic architecture and the transfer of information within and between organisms. These agents are ubiquitous in Eukaryotes, comprising 50-90% of the genomic information in some cases. RESULTS: Analyses conducted for over a decade illustrate that Retroid agents are engaged in a wide spectrum of molecular evolutionary events. A description of these complexities is presented as a three parameter conceptual framework that considers type, size, and mechanism of events that contribute to the evolution of genes, genomes, and organisms. The results of new data mining studies further illustrate the complexity of the network of relationships among and between Retroid agents and other organisms. A hidden Markov model construction strategy is presented that generates a multiple alignment more similar to those refined by human experts. CONTACT: [email protected]. edu  (+info)

Sustained but not transient phytochrome A signaling targets a region of an Lhcb1*2 promoter not necessary for phytochrome B action. (19/230)

Current evidence is inconclusive regarding the point of signaling convergence downstream from different members of the phytochrome family. In transgenic Arabidopsis, the activity of a reporter enzyme under the control of the -453 to +67 fragment of an Lhcb1*2 promoter shows very low fluence responses (VLFRs) and high-irradiance responses (HIRs) mediated by phytochrome A and low-fluence responses (LFRs) mediated by phytochrome B. A 5' deletion of the promoter to -134 abolished the HIR without affecting VLFR or LFR. In transgenic tobacco, VLFR and LFR were observed for the -176 to -31 or -134 to -31 fragments of Lhcb1*2 fused to 35S cauliflower mosaic virus minimal promoters, but only the largest fragment showed HIR. We propose that sustained activation of phytochrome A with far-red light initiates a signaling cascade that deviates from phytochrome B signaling and transient phytochrome A signaling and that this divergence extends as far as the Lhcb1*2 promoter.  (+info)

Continuous and discontinuous ribosome scanning on the cauliflower mosaic virus 35 S RNA leader is controlled by short open reading frames. (20/230)

The pathways of scanning ribosome migration controlled by the cauliflower mosaic virus 35 S RNA leader were investigated in vitro and in vivo. This long (600 nucleotides) leader contains several short open reading frames (sORFs) and folds into an extended hairpin structure with three main stable stem sections. Translation initiation downstream of the leader is cap-dependent and occurs via ribosomal shunt under the control of two cis elements, a short open reading frame A (sORF A) followed by stem section 1. Here we show that a second similar configuration comprising sORF B followed by stem section 2 also allows shunting. The efficiency of the secondary shunt was greatly increased when stem section 1 was destabilized. In addition, we present evidence that a significant fraction of reinitiation-competent ribosomes that escape both shunt events migrate linearly via the structured central region but are intercepted by internal AUG start codons. Thus, expression downstream of the 35 S RNA leader is largely controlled by its multiple sORFs.  (+info)

Agroinfiltration of Cauliflower mosaic virus gene VI elicits hypersensitive response in Nicotiana species. (21/230)

Cauliflower mosaic virus strain W260 induces hypersensitive response (HR) in Nicotiana edwardsonii and systemic cell death in N. clevelandii. In contrast, the D4 strain of Cauliflower mosaic virus evades the host defenses in Nicotiana species; it induces chlorotic primary lesions and a systemic mosaic in both hosts. Previous studies with chimeric viruses had indicated that gene VI of W260 was responsible for elicitation of HR or cell death. To prove conclusively that W260 gene VI is responsible, we inserted gene VI of W260 and D4 into the Agrobacterium tumefaciens binary vector pKYLX7. Agroinfiltration of these constructs into the leaves of N. edwardsonii and N. clevelandii revealed that gene VI of W260 elicited HR in N. edwardsonii 4 to 5 days after infiltration and cell death in N. clevelandii approximately 9 to 12 days after infiltration. In contrast, gene VI of D4 did not elicit HR or cell death in either Nicotiana species. A frameshift mutation introduced into gene VI of W260 abolished its ability to elicit HR or cell death in both Nicotiana species, demonstrating that the elicitor is the gene VI protein.  (+info)

Interaction between the open reading frame III product and the coat protein is required for transmission of cauliflower mosaic virus by aphids. (22/230)

Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.  (+info)

Transient expression of a GUS reporter gene from cauliflower mosaic virus replacement vectors in the presence and absence of helper virus. (23/230)

Vectors based upon the genome of cauliflower mosaic virus (CaMV) have only a limited capacity for replicating foreign DNA in plants. A helper virus system has been developed to complement CaMV constructs capable of carrying a large foreign gene (glucuronidase; GUS). GUS replaced part or all of the non-essential CaMV gene II and the essential genes III, IV and V. This construct was co-inoculated mechanically with wild-type CaMV helper virus onto Brassica rapa leaves to promote GUS vector complementation. After 1 week, blue foci of GUS activity were observed in the centres of the local lesions. Leaves inoculated with the GUS construct in the absence of helper virus showed randomly distributed foci of GUS activity that were generally smaller than the lesion-associated GUS foci. Inoculation with a simple non-replicating CaMV 35S promoter-GUS construct also produced small GUS foci. Co-inoculation of helper virus with CaMV gene replacement vectors in which replication was prevented by moving the primer-binding site or by deletion of an essential splice acceptor produced only small, randomly distributed GUS activity foci, demonstrating that the lesion-associated foci were produced by gene expression from replicating constructs. These experiments show that CaMV genes III-V can be complemented by wild-type virus and replacement gene vectors can be used for transient gene expression studies with CaMV constructs that distinguish gene expression associated with a replicating vector from that associated with a non-replicating vector.  (+info)

Ribosome shunt is essential for infectivity of cauliflower mosaic virus. (24/230)

Cauliflower mosaic virus (CaMV) is a DNA-containing pararetrovirus replicating by means of reverse transcription of a terminally redundant pregenomic 35S RNA that is also used as a polycistronic mRNA. The leader of 35S RNA is long, highly structured, and contains multiple short ORFs (sORFs), which strongly interfere with the ribosome scanning process. Translation of this RNA is initiated by a ribosome shunt mechanism, in which ribosomes translate the most 5'-proximal short ORF (sORF A), then skip a large region of the leader containing a putative RNA encapsidation signal and reinitiate translation at the first long viral ORF. Here, we demonstrate that the efficiency of the sORF A-mediated ribosome shunt is an important determinant of viral infectivity. Point mutations in sORF A, which reduced the basal level of shunt-dependent expression and the degree of shunt enhancement by a CaMV-encoded translation transactivator (TAV), consequently reduced infectivity of the virus in turnip plants. First- or second-site reversions appeared in the viral progeny. The second-site reversions restored shuntdependent expression to an extent correlating with their relative abundance in the progeny. Mutations that abolished both the basal and TAV-activated components of shunting proved to be lethal. Finally, by using an artificial stem structure that blocks scanning, we obtained direct evidence that ribosome shunt operates during CaMV infection.  (+info)