Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. (33/3963)

The recently cloned ecto-ATPase and ecto-apyrase (ecto-ATP diphosphohydrolase) are plasma-membrane-bound enzymes responsible for the extracellular degradation of nucleoside 5'-triphosphates and nucleoside 5'-diphosphates. We expressed the rat-derived enzymes in CHO cells to compare their molecular and functional properties. Sequence-specific polyclonal antibodies differentiate between the two proteins and reveal identical molecular masses of 70-80 kDa. Both enzymes are stimulated by either Ca2+ or Mg2+ and reveal a broad substrate specificity towards purine and pyrimidine nucleotides. Whereas ecto-apyrase hydrolyzes nucleoside 5'-diphosphates at a rate approximately 20-30% lower than nucleoside-5'-triphosphates, ecto-ATPase hydrolyzes nucleoside-5'-diphosphates only to a marginal extent. The sensitivity of the two enzymes to the inhibitors of P2 receptors suramin, PPADS and reactive blue differs. Hydrolysis of ATP by ecto-ATPase leads to the accumulation in the medium of extracellular ADP as an intermediate product, whereas ecto-apyrase dephosphorylates ATP directly to AMP. Our results suggest that previous data describing extracellular hydrolysis of ATP by a variety of intact cellular systems with unidentified ecto-nucleotidases may be explained by the coexpression of ecto-ATPase and ecto-apyrase.  (+info)

Effect of cationic lipids in the formation of asymmetries in supported bilayers. (34/3963)

We have studied the formation of a supported bilayer containing both cationic and zwitterionic lipids by fusion of small unilamellar vesicles (SUV) onto the solid surface at low salt conditions using a combination of attenuated total reflection infrared (ATR-IR) and deuterium NMR spectroscopy with microcalorimetry. The data suggest that a significant cationic lipid asymmetry between the outer (distal) and the inner (proximal) monolayer of a supported bilayer results under conditions of prolonged incubation times of the solid support with the SUV coating solution. For a SUV composition of DPPC/DHDAB (4:1) we observed an enrichment of the cationic component in the proximal monolayer of up to 200% compared to the distal monolayer after 12 h incubation. It is suggested that the electrostatic potential arising from the solid surface is the driving force for the creation of this asymmetry by means of directed flip-flop between the monolayers and/or by temporary fusion between SUV from the bulk with the supported bilayer.  (+info)

Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. (35/3963)

Anions and cations have long been recognized to be capable of modifying the functioning of various membrane-related physiological processes. Here, a fluorescent ratio method using the styrylpyridinium dyes, RH421 and di-8-ANEPPS, was applied to determine the effect of a range of anions and cations on the intramembrane dipole potential of dimyristoylphosphatidylcholine vesicles. It was found that certain anions cause a decrease in the dipole potential. This could be explained by binding within the membrane, in support of a hypothesis originally put forward by A. L. Hodgkin and P. Horowicz [1960, J. Physiol. (Lond.) 153:404-412.] The effectiveness of the anions in reducing the dipole potential was found to be ClO4- > SCN- > I- > NO3- > Br- > Cl- > F- > SO42-. This order could be modeled by a partitioning of ions between the membrane and the aqueous phase, which is controlled predominantly by the Gibbs free energy of hydration. Cations were also found to be capable of reducing the dipole potential, although much less efficiently than can anions. The effects of the cations was found to be trivalent > divalent > monovalent. The cation effects were attributed to binding to a specific polar site on the surface of the membrane. The results presented provide a molecular basis for the interpretation of the Hofmeister effect of lyotropic anions on ion transport proteins.  (+info)

The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. (36/3963)

The industrially important polysaccharide alginate is composed of the two sugar monomers beta-D-mannuronic acid (M) and its epimer alpha-L-guluronic acid (G). In the bacterium Azotobacter vinelandii, the G residues originate from a polymer-level reaction catalyzed by one periplasmic and at least five secreted mannuronan C-5-epimerases. The secreted enzymes are composed of repeats of two protein modules designated A (385 amino acids) and R (153 amino acids). The modular structure of one of the epimerases, AlgE1, is A1R1R2R3A2R4. This enzyme has two catalytic sites for epimerization, each site introducing a different G distribution pattern, and in this article we report the DNA-level construction of a variety of truncated forms of the enzyme. Analyses of the properties of the corresponding proteins showed that an A module alone is sufficient for epimerization and that A1 catalyzed the formation of contiguous stretches of G residues in the polymer, while A2 introduces single G residues. These differences are predicted to strongly affect the physical and immunological properties of the reaction product. The epimerization reaction is Ca2+ dependent, and direct binding studies showed that both the A and R modules bind this cation. The R modules appeared to reduce the Ca2+ concentration needed for full activity and also stimulated the reaction rate when positioned both N and C terminally.  (+info)

Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. (37/3963)

Cationic lipid-mediated intravenous gene delivery shows promise in treating pulmonary diseases including lung tumor metastases, pulmonary hypertension, and acute respiratory distress syndrome. Nevertheless, clinical applications of cationic lipidic vectors via intravenous administration are limited by their transient gene expression. In addition, repeated dosing is not effective at frequent intervals. In an effort to elucidate the mechanism of gene inactivation, we report in this study that cationic lipid-protamine-DNA (LPD) complexes, but not each component alone, can induce a high level of cytokine production, including interferon-gamma and tumor necrosis factor-alpha. Furthermore, we demonstrate that LPD administration triggers apoptosis in the lung, a phenomenon that may be mediated in part by the two cytokines. Treatment of mice with antibodies against the two cytokines prolongs the duration of gene expression and also improves lung transfection on a second administration of LPD. Although the mechanism underlying LPD-induced cytokine production is unclear, methylation of the DNA significantly decreased the level of both interferon-gamma and tumor necrosis factor-alpha, suggesting that unmethylated CpG sequences in plasmid DNA play an important role. These data suggest that decreasing the CpG-mediated immune response while not affecting gene expression may be a useful therapeutic strategy to improve cationic lipid-mediated intravenous gene delivery to the lung.  (+info)

Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania. (38/3963)

Antisense oligonucleotides have been considered as inhibitors of growth of intracellular parasites such as Leishmania, but only limited inhibition has been observed in vitro. We have encapsulated an antisense oligonucleotide, complementary to the Leishmania universal miniexon sequence, in cationic liposomes. Low concentrations (4 microM) of encapsulated oligonucleotides specifically reduced the amastigote burden within cultured macrophages by 80%. This result illustrates the importance of effective delivery for efficient antiparasitic activity of antisense oligonucleotides.  (+info)

Cationic currents induced by Clostridium perfringens type A enterotoxin in human intestinal CaCO-2 cells. (39/3963)

Clostridium perfringens type A produces an enterotoxin that induces diarrhoea experimentally in man and animals. The enterotoxin causes increased membrane permeability in susceptible cells which is thought to be due to pore formation in the host cell membrane. The effect of purified C. perfringens enterotoxin on intact intestinal CaCO-2 monolayers was examined in Ussing chambers and on single cells by whole-cell patch clamp. Mucosal application of C. perfringens enterotoxin resulted in prompt increases in short-circuit current coupled with a reduction in transepithelial resistance consistent with movement of sodium and other cations smaller than diethanolamine from mucosa to serosa. These changes were independent of extracellular calcium. Increases in short-circuit current were also observed in the apical membranes of CaCO-2 monolayers permeabilised across the basolateral membrane with nystatin. Currents were blocked by subsequent exposure to mucosal barium and zinc. Zinc also prevented the development of the current increases in apical membranes. Cationic currents were also observed following exposure of single CaCO-2 cells in whole-cell patch clamp recordings. These data indicate that C. perfringens enterotoxin is able to form cation permeant pores in the apical membrane of human intestinal CaCO-2 epithelia and the increases in short-circuit current can be prevented by pre-exposure to zinc ions.  (+info)

Carbocations in the synthesis of prostaglandins by the cyclooxygenase of PGH synthase? A radical departure! (40/3963)

Evidence already available is used to demonstrate that although prostaglandin G/H synthase hydroxylates arachidonic acid through radical intermediates, it effects cyclizations through a carbocation center at C-10. This is produced following migration of H to the initial radical at C-13 and a 1epsilon oxidation. Under orbital symmetry control, the cyclizations can give only the ring size and trans stereochemistry actually observed. After cyclization, the H-shift reverses to take the sequence back into current radical theory for hydroxylation at C-15. Thus 10,10-difluoroarachidonic acid cannot be cyclized, although it can be hydroxylated. Acetylation of Ser516 in the isoform synthase-2 is considered to oppose carbocation formation and/or H-migration and so prevent cyclizations while permitting hydroxylations; the associated inversion of chirality at C-15 can then readily be accommodated without the change in conformation required by other schemes. Suicide inhibition occurs when carbocations form stable bonds upon (thermal) contact with adjacent heteroatoms, etc. Because the cyclooxygenase and peroxidase functions operate simultaneously through the same heme, phenol acts as reducing cosubstrate for the cyclooxygenase, thus enabling it to promote PGG2 production and protect the enzyme from oxidative destruction.  (+info)