Catalytic properties of Na(+)-translocating V-ATPase in Enterococcus hirae. (57/762)

V-ATPases make up a family of proton pumps distributed widely from bacteria to higher organisms. We found a variant of this family, a Na(+)-translocating ATPase, in a Gram-positive bacterium, Enterococcus hirae. The Na(+)-ATPase was encoded by nine ntp genes from F to D in an ntp operon (ntpFIKECGABDHJ): the ntpJ gene encoded a K(+) transporter independent of the Na(+)-ATPase. Expression of this operon, encoding two transport systems for Na(+) and K(+) ions, was regulated at the transcriptional level by intracellular Na(+) as the signal. Structural aspects and catalytic properties of purified Na(+)-ATPase closely resembled those of other V-type H(+)-ATPases. Interestingly, the E. hirae enzyme showed a very high affinity for Na(+) at catalytic reaction. This property enabled the measurement of ion binding to this ATPase for the first time in the study of V- and F-ATPases. Properties of Na(+) binding to V-ATPase were consistent with the model that V-ATPase proteolipids form a rotor ring consisting of hexamers, each having one cation binding site. We propose here a structure model of Na(+) binding sites of the enzyme.  (+info)

Na(+)-driven flagellar motor of Vibrio. (58/762)

Bacterial flagellar motors are molecular machines powered by the electrochemical potential gradient of specific ions across the membrane. Bacteria move using rotating helical flagellar filaments. The flagellar motor is located at the base of the filament and is buried in the cytoplasmic membrane. Flagellar motors are classified into two types according to the coupling ion: namely the H(+)-driven motor and the Na(+)-driven motor. Analysis of the flagellar motor at the molecular level is far more advanced in the H(+)-driven motor than in the Na(+)-driven motor. Recently, the genes of the Na(+)-driven motor have been cloned from a marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. In this review, we summarize recent studies of the Na(+)-driven flagellar motor.  (+info)

The Na(+)-translocating F(1)F(0) ATP synthase of Propionigenium modestum: mechanochemical insights into the F(0) motor that drives ATP synthesis. (59/762)

The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  (+info)

The Na(+) cycle in Acetobacterium woodii: identification and characterization of a Na(+) translocating F(1)F(0)-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. (60/762)

The homoacetogenic bacterium Acetobacterium woodii relies on a sodium ion current across its cytoplasmic membrane for energy-dependent reactions. The sodium ion potential is established by a yet to be identified primary, electrogenic pump connected to the Wood-Ljungdahl pathway. Reactions possibly involved in Na(+) export are discussed. The electrochemical sodium ion potential generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. Biochemical and molecular data identified the Na(+)-ATPase of A. woodii as a typical member of the F(1)F(0) class of ATPases. Its catalytic properties and the hypothetical sodium ion binding site in subunit c are discussed. The encoding genes were cloned and, surprisingly, the atp operon was shown to contain multiple copies of genes encoding subunit c. Two copies encode identical 8 kDa proteolipids, and a third copy arose by duplication and subsequent fusion of two genes. Furthermore, the duplicated subunit c does not contain the ion binding site in hair pin two. Biochemical and molecular data revealed that all three copies of subunit c constitute a mixed oligomer. The evolution of the structure and function of subunit c in ATPases from eucarya, bacteria, and archaea is discussed.  (+info)

Towards the molecular mechanism of Na(+)/solute symport in prokaryotes. (61/762)

The Na(+)/solute symporter family (SSF, TC No. 2.A.21) contains more than 40 members of pro- and eukaryotic origin. Besides their sequence similarity, the transporters share the capability to utilize the free energy stored in electrochemical Na(+) gradients for the accumulation of solutes. As part of catabolic pathways most of the transporters are most probably involved in the acquisition of nutrients. Some transporters play a role in osmoadaptation. With a high resolution structure still missing, a combination of genetic, protein chemical and spectroscopic methods has been used to gain new insights into the structure and molecular mechanism of action of the transport proteins. The studies suggest a common 13-helix motif for all members of the SSF according to which the N-terminus is located in the periplasm and the C-terminus is directed into the cytoplasm (except for proteins containing a N- or C-terminal extension). Furthermore, an amino acid substitution analysis of the Na(+)/proline transporter (PutP) of Escherichia coli, a member of the SSF, has identified regions of particular functional importance. For example, amino acids of TM II of PutP proved to be critical for high affinity binding of Na(+) and proline. In addition, it was shown that ligand binding induces widespread conformational alterations in the transport protein. Taken together, the studies substantiate the common idea that Na(+)/solute symport is the result of a series of ligand-induced structural changes.  (+info)

Na(+)/H(+) antiporters. (62/762)

Na(+)/H(+) antiporters are membrane proteins that play a major role in pH and Na(+) homeostasis of cells throughout the biological kingdom, from bacteria to humans and higher plants. The emerging genomic sequence projects already have started to reveal that the Na(+)/H(+) antiporters cluster in several families. Structure and function studies of a purified antiporter protein have as yet been conducted mainly with NhaA, the key Na(+)/H(+) antiporter of Escherichia coli. This antiporter has been overexpressed, purified and reconstituted in a functional form in proteoliposomes. It has recently been crystallized in both 3D as well as 2D crystals. The NhaA 2D crystals were analyzed by cryoelectron microscopy and a density map at 4 A resolution was obtained and a 3D map was reconstructed. NhaA is shown to exist in the 2D crystals as a dimer of monomers each composed of 12 transmembrane segments with an asymmetric helix packing. This is the first insight into the structure of a polytopic membrane protein. Many Na(+)/H(+) antiporters are characterized by very dramatic sensitivity to pH, a property that corroborates their role in pH homeostasis. The molecular mechanism underlying this pH sensitivity has been studied in NhaA. Amino acid residues involved in the pH response have been identified. Conformational changes transducing the pH change into a change in activity were found in loop VIII-IX and at the N-terminus by probing trypsin digestion or binding of a specific monoclonal antibody respectively. Regulation by pH of the eukaryotic Na(+)/H(+) antiporters involves an intricate signal transduction pathway (recently reviewed by Yun et al., Am. J. Physiol. 269 (1995) G1-G11). The transcription of NhaA has been shown to be regulated by a novel Na(+)-specific regulatory network. It is envisaged that interdisciplinary approaches combining structure, molecular and cell biology as well as genomics should be applied in the future to the study of this important group of transporters.  (+info)

The Na(+)-dependence of alkaliphily in Bacillus. (63/762)

A Na(+) cycle plays a central role in the remarkable capacity of aerobic, extremely alkaliphilic Bacillus species for pH homeostasis. The capacity for pH homeostasis, in turn, appears to set the upper pH limit for growth. One limb of the alkaliphile Na(+) cycle consists of Na(+)/H(+) antiporters that achieve net H(+) accumulation that is coupled to Na(+) efflux. The major antiporter on which pH homeostasis depends is thought to be the Mrp(Sha)-encoded antiporter, first identified from a partial clone in Bacillus halodurans C-125. Mrp(Sha) may function as a complex. While this antiporter is capable of secondary antiport energized by an imposed or respiration-generated protonmotive force, the possibility of a primary mode has not been excluded. In Bacillus pseudofirmus OF4, at least two additional antiporters, including NhaC, have supporting roles in pH homeostasis. Some of these additional antiporters may be especially important for antiport at low [Na(+)] or at near-neutral pH. The second limb of the Na(+) cycle facilitates Na(+) re-entry via Na(+)/solute symporters and, perhaps, the ion channel associated with the Na(+)-dependent flagellar motor. The process of pH homeostasis is also enhanced, perhaps especially during transitions to high pH, by different arrays of secondary cell wall polymers in the two alkaliphilic Bacillus species studied most intensively. The mechanisms whereby alkaliphiles handle the challenge of Na(+) stress at very elevated [Na(+)] are just beginning to be identified, and a hypothesis has been advanced to explain the finding that B. pseudofirmus OF4 requires a higher [Na(+)] for growth at near-neutral pH than at very alkaline pH values.  (+info)

Role of sodium bioenergetics in Vibrio cholerae. (64/762)

The ability of the bacterium to use sodium in bioenergetic processes appears to play a key role in both the environmental and pathogenic phases of Vibrio cholerae. Aquatic environments, including fresh, brackish, and coastal waters, are an important factor in the transmission of cholera and an autochthonous source. The organism is considered to be halophilic and has a strict requirement for Na(+) for growth. Furthermore, expression of motility and virulence factors of V. cholerae is intimately linked to sodium bioenergetics and to each other. Several lines of evidence indicated that the activity of the flagellum of V. cholerae might have an impact on virulence gene regulation. As the V. cholerae flagellum is sodium-driven and the Na(+)-NQR enzyme is known to create a sodium motive force across the bacterial membrane, it was recently suggested that the increased toxT expression observed in a nqr-negative strain is mediated by affecting flagella activity. It was suggested that the V. cholerae flagellum might respond to changes in membrane potential and the resulting changes in flagellar rotation might serve as a signal for virulence gene expression. However, we recently demonstrated that although the flagellum of V. cholerae is not required for the effects of ionophores on virulence gene expression, changes in the sodium chemical potential are sensed and thus alternative mechanisms, perhaps involving the TcpP/H proteins, for the detection of these conditions must exist. Analyzing the underlying mechanisms by which bacteria respond to changes in the environment, such as their ability to monitor the level of membrane potential, will probably reveal complex interplays between basic physiological processes and virulence factor expression in a variety of pathogenic species.  (+info)