(1/3809) Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme.

The alginate lyase-encoding gene (algL) of Azotobacter chroococcum was localized to a 3.1-kb EcoRI DNA fragment that revealed an open reading frame of 1,116 bp. This open reading frame encodes a protein of 42.98 kDa, in agreement with the value previously reported by us for this protein. The deduced protein has a potential N-terminal signal peptide that is consistent with its proposed periplasmic location. The analysis of the deduced amino acid sequence indicated that the gene sequence has a high homology (90% identity) to the Azotobacter vinelandii gene sequence, which has very recently been deposited in the GenBank database, and that it has 64% identity to the Pseudomonas aeruginosa gene sequence but that it has rather low homology (15 to 22% identity) to the gene sequences encoding alginate lyase in other bacteria. The A. chroococcum AlgL protein was overproduced in Escherichia coli and purified to electrophoretic homogeneity in a two-step chromatography procedure on hydroxyapatite and phenyl-Sepharose. The kinetic and molecular parameters of the recombinant alginate lyase are similar to those found for the native enzyme.  (+info)

(2/3809) Regulated exopolysaccharide production in Myxococcus xanthus.

Myxococcus xanthus fibrils are cell surface-associated structures composed of roughly equal amounts of polysaccharide and protein. The level of M. xanthus polysaccharide production under different conditions in the wild type and in several mutants known to have alterations in fibril production was investigated. Wild-type exopolysaccharide increased significantly as cells entered the stationary phase of growth or upon addition of Ca2+ to growing cells, and the polysaccharide-induced cells exhibited an enhanced capacity for cell-cell agglutination. The activity of the key gluconeogenic pathway enzyme phosphoenolpyruvate carboxykinase (Pck) also increased under these conditions. Most fibril-deficient mutants failed to produce polysaccharide in a stationary-phase- or Ca2+-dependent fashion. However, regulation of Pck activity was generally unimpaired in these mutant strains. In an stk mutant, which overproduces fibrils, polysaccharide production and Pck activity were constitutively high under the conditions tested. Polysaccharide production increased in most fibril-deficient strains when an stk mutant allele was present, indicating that these fibril-deficient mutants retained the basic cellular components required for fibril polysaccharide production. In contrast to other divalent cations tested, Sr2+ effectively replaced Ca2+ in stimulating polysaccharide production, and either Ca2+ or Sr2+ was required for fruiting-body formation by wild-type cells. By using transmission electron microscopy of freeze-substituted log-phase wild-type cells, fibril material was observed as a cell surface-associated layer of uniform thickness composed of filaments with an ordered structure.  (+info)

(3/3809) Metal-catalyzed oxidation of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: inactivation and destabilization by oxidation of active-site cysteines.

The in vitro instability of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [DAHPS(Phe)] from Escherichia coli has been found to be due to a metal-catalyzed oxidation mechanism. DAHPS(Phe) is one of three differentially feedback-regulated isoforms of the enzyme which catalyzes the first step of aromatic biosynthesis, the formation of DAHP from phosphoenolpyruvate and D-erythrose-4-phosphate. The activity of the apoenzyme decayed exponentially, with a half-life of about 1 day at room temperature, and the heterotetramer slowly dissociated to the monomeric state. The enzyme was stabilized by the presence of phosphoenolpyruvate or EDTA, indicating that in the absence of substrate, a trace metal(s) was the inactivating agent. Cu2+ and Fe2+, but none of the other divalent metals that activate the enzyme, greatly accelerated the rate of inactivation and subunit dissociation. Both anaerobiosis and the addition of catalase significantly reduced Cu2+-catalyzed inactivation. In the spontaneously inactivated enzyme, there was a net loss of two of the seven thiols per subunit; this value increased with increasing concentrations of added Cu2+. Dithiothreitol completely restored the enzymatic activity and the two lost thiols in the spontaneously inactivated enzyme but was only partially effective in reactivation of the Cu2+-inactivated enzyme. Mutant enzymes with conservative replacements at either of the two active-site cysteines, Cys61 or Cys328, were insensitive to the metal attack. Peptide mapping of the Cu2+-inactivated enzyme revealed a disulfide linkage between these two cysteine residues. All results indicate that DAHPS(Phe) is a metal-catalyzed oxidation system wherein bound substrate protects active-site residues from oxidative attack catalyzed by bound redox metal cofactor. A mechanism of inactivation of DAHPS is proposed that features a metal redox cycle that requires the sequential oxidation of its two active-site cysteines.  (+info)

(4/3809) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides.

Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.  (+info)

(5/3809) Identification and characterization of ligands for L-selectin in the kidney. II. Expression of chondroitin sulfate and heparan sulfate proteoglycans reactive with L-selectin.

Ligands for the leukocyte adhesion molecule L-selectin are expressed not only in lymph node high endothelial venules (HEV) but also in the renal distal tubuli. Here we report that L-selectin-reactive molecules in the kidney are chondroitin sulfate and heparan sulfate proteoglycans of 500-1000 kDa, unlike those in HEV bearing sialyl Lewis X-like carbohydrates. Binding of L-selectin to these molecules was mediated by the lectin domain of L-selectin and required divalent cations. Binding was inhibited by chondroitinase and/or heparitinase but not sialidase. Thus, L-selectin can recognize chondroitin sulfate and heparan sulfate glycosaminoglycans structurally distinct from sialyl Lewis X-like carbohydrates.  (+info)

(6/3809) Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium.

Eosinophil peroxidase (EPO), a cationic protein found in eosinophils, has been reported to be cytotoxic independent of its peroxidase activity. This study investigated with electrophysiological methods whether EPO is toxic to mammalian urinary bladder epithelium. Results indicate that EPO, when added to the mucosal solution, increases apical membrane conductance of urinary bladder epithelium only when the apical membrane potential is cell interior negative. The EPO-induced conductance was concentration dependent, with a maximum conductance of 411 microseconds/cm2 and a Michaelis-Menten constant of 113 nM. The EPO-induced conductance was nonselective for K+ and Cl-. The conductance was partially reversed using voltage but not by removal of EPO from the bulk solution. Mucosal Ca2+ reversed the EPO-induced conductance by a mechanism involving reversible block of the conductance. Prolonged exposure (up to 1 h) to EPO was toxic to the urinary bladder epithelium, as indicated by an irreversible increase in transepithelial conductance. These results suggest that EPO is indeed toxic to urinary bladder epithelium via a mechanism that involves an increase in membrane permeability.  (+info)

(7/3809) Structure of the oligonucleotide d(CGTATATACG) as a site-specific complex with nickel ions.

In this paper we explore the application of Ni2+to the crystallization of oligonucleotides. We have determined in this way the structure of a fully alternating (Y-R) decanucleotide d(CGTATATACG) by single crystal X-ray diffraction. This is the first oligonucleotide crystal structure with an alternating 5'-(TA)3-3' central part. Alternating oligonucleotides have a particular interest since they often have a unique structure. In this case the general conformation is B-like with an alternating twist and an end-to-end interaction which involves terminal guanines. The crystal belongs to space group P41212 with a = b = 52.46, c = 101.49 A. This packing imposes a 90 degrees crossing of the symmetry related helices. This is a new way of packing for decamers. The oligonucleotide structure is characterized by the specific association with seven nickel ions, involving the N7 atom of every guanine. One of the Ni2+ions is shared between two guanines of symmetry related molecules. Until now no oligonucleotide has been crystallized in the presence of this metal ion. A novel C.A.T triplet structure has also been tentatively identified.  (+info)

(8/3809) Heparin influence on alpha-staphylotoxin formed channel.

The effects of heparin on ion channels formed by Staphylococcus aureus alpha-toxin (ST channel) in lipid bilayers were studied under voltage clamp conditions. Heparin concentrations as small as 100 pM induced a sharp dose-dependent increase in channel voltage sensitivity. This was only observed when heparin was added to the negative-potential side of lipid bilayers in the presence of divalent cations. Divalent cations differ in their efficiency: Zn2+>Ca2+>Mg2+. The apparent positive gating charge increased 2-3-fold with heparin addition as well as with acidification of the bathing solution. 'Free' carboxyl groups and carboxyl groups in ion pairs of the protein moiety are hypothesized to interact with sulfated groups of heparin through divalent cation bridges. The cis mouth of the channel (that protrudes beyond the membrane plane on the side of ST addition and to which voltage was applied) is less sensitive to heparin than the trans-mouth. It is suggested that charged residues which interact with heparin at the cis mouth of ST channels and which contribute to the effective gating charge at negative voltage may be physically different from those at the trans mouth and at positive voltage.  (+info)