Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase. (1/100)

The terminal steps in the biosynthesis of the monoterpenoid indole alkaloids vindoline and minovincinine are catalyzed by separate acetyl coenzyme A-dependent O-acetyltransferases in Madagascar periwinkle (Catharanthus roseus G. Don). Two genes were isolated that had 63% nucleic acid identity and whose deduced amino acid sequences were 78% identical. Active enzymes that were expressed as recombinant His-tagged proteins in Escherichia coli were named minovincinine-19-O-acetyltransferase (MAT) and deacetylvindoline-4-O-acetyltransferase (DAT) because they catalyzed the 19-O-acetylation of indole alkaloids such as minovincinine and horhammericine and the 4-O-acetylation of deacetylvindoline, respectively. Kinetic studies showed that the catalytic efficiency of recombinant MAT (rMAT) was very poor compared with that of recombinant DAT (rDAT), whose turnover rates for Acetyl-coenzyme A and deacetylvindoline were approximately 240- and 10,000-fold greater than those of rMAT. Northern-blot analyses showed that MAT is expressed in cortical cells of the root tip, whereas DAT is only expressed in specialized idioblast and laticifer cells within light exposed tissues like leaves and stems. The coincident expression of trytophan decarboxylase, strictosidine synthase, and MAT within root cortical cells suggests that the entire pathway for the biosynthesis of tabersonine and its substituted analogs occurs within these cells. The ability of MAT to catalyze the 4-O-acetylation of deacetylvindoline with low efficiency suggests that this enzyme, rather than DAT, is involved in vindoline biosynthesis within transformed cell and root cultures, which accumulate low levels of this alkaloid under certain circumstances.  (+info)

Cloning of a cDNA encoding an E2 ubiquitin-conjugating enzyme from Catharanthus roseus: expression analysis in plant organs and in response to hormones in cell suspensions. (2/100)

A novel cDNA (Crubie2) encoding ubiquitin-conjugating enzyme E2 was isolated from a Catharanthus roseus cDNA library. Sequence comparison with Arabidopsis thaliana E2 sequences revealed that CrUBIE2 is a member of a new plant E2 sub-family. Expression of Crubie2 is repressed in developing organs and down-regulated by cytokinin suggesting that a decrease in the ubiquitin-dependent proteolytic pathway may take part in the regulation of alkaloid biosynthesis in C. roseus cell suspensions.  (+info)

Inheritance of flower color in periwinkle: orange-red corolla and white eye. (3/100)

The commonly found flower colors in periwinkle (Catharanthus roseus)--pink, white, red-eyed, and pale pink center--are reported to be governed by the epistatic interaction between four genes--A, R, W, and I. The mode of inheritance of an uncommon flower color, orange-red corolla and white eye, was studied by crossing an accession possessing this corolla color with a white flowered variety (Nirmal). The phenotype of the F(1) plants and segregation data of F(2) and backcross generations suggested the involvement of two more interacting and independently inherited genes, one (proposed symbol E) determining the presence or absence of red eye and another (proposed symbol O) determining orange-red corolla.  (+info)

Expression analysis in plant and cell suspensions of CrCKR1, a cDNA encoding a histidine kinase receptor homologue in Catharanthus roseus (L.) G. Don. (4/100)

A full length cDNA (CrCKR1) encoding a hybrid histidine kinase was isolated from a Catharanthus roseus cDNA library. The kinase belongs to the subfamily of cytokinin receptors represented by CRE1/AHK4/WOL in Arabidopsis thaliana. In cell suspensions, the expression of CrCKR1 is not affected by various stress and hormonal treatments but is stimulated in cells continuously exposed to cytokinin. In plants, CrCKR1 is strongly expressed only in the petals of mature flowers. These data suggest that CrCKR1 could take part in the mechanisms leading to the production of secondary metabolites in C. roseus.  (+info)

Supercritical fluid extraction and liquid chromatography-electrospray mass analysis of vinblastine from Catharanthus roseus. (5/100)

Supercritical fluid extraction using carbon dioxide modified with methanol, methanol-diethylamine, or methanol-triethylamine was used to extract vinblastine from the aerial portions of Catharanthus roseus. An HPLC-electrospray ionization (ESI)/MS analysis method was also developed to quantify the alkaloids in these extracts. Of the supercritical solvents evaluated, carbon dioxide-methanol-triethylamine (80 : 18 : 2) at 80 degrees C and 34.0 MPa greatly improved the supercritical fluid extraction (SFE) yield of vinblastine by as much as 76.4% over methanol extraction, while the other solvent conditions extracted the compound at yields less than 25% that of a methanol extraction. These results were confirmed by the robust HPLC-ESI/MS analytical method developed in this study.  (+info)

An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. (6/100)

The natural occurrence of 22-hydroxylated steroids in cultured Catharanthus roseus cells and in Arabidopsis seedlings was investigated. Using full-scan gas chromatography-mass spectrometry analysis, (22S)-22-hydroxycampesterol (22-OHCR), (22S,24R)-22-hydroxyergost-4-en-3-one (22-OH-4-en-3-one), (22S,24R)-22-hydroxy-5alpha-ergostan-3-one (22-OH-3-one), 6-deoxocathasterone (6-deoxoCT), 3-epi-6-deoxoCT, 28-nor-22-OHCR, 28-nor-22-OH-4-en-3-one, 28-nor-22-OH-3-one, 28-nor-6-deoxoCT, and 3-epi-28-nor-6-deoxoCT were identified. Metabolic experiments with deuterium-labeled 22-OHCR were performed in cultured C. roseus cells and Arabidopsis seedlings (wild type and det2), and the metabolites were analyzed by gas chromatography-mass spectrometry. In both C. roseus cells and wild-type Arabidopsis seedlings, [(2)H(6)]22-OH-4-en-3-one, [(2)H(6)]22-OH-3-one, [(2)H(6)]6-deoxoCT, and [(2)H(6)]3-epi-6-deoxoCT were identified as metabolites of [(2)H(6)]22-OHCR, whereas the major metabolite in det2 seedlings was [(2)H(6)]22-OH-4-en-3-one. Analysis of endogenous levels of these brassinosteroids revealed that det2 accumulates 22-OH-4-en-3-one. The levels of downstream compounds were remarkably reduced compared with the wild type. Exogenously applied 22-OH-3-one and 6-deoxoCT were found to rescue det2 mutant phenotypes, whereas 22-OHCR and 22-OH-4-en-3-one did not. These results substantiate the existence of a new subpathway (22-OHCR --> 22-OH-4-en-3-one --> 22-OH-3-one --> 6-deoxoCT) and reveal that the det2 mutant is defective in the conversion of 22-OH-4-en-3-one to 22-OH-3-one, which leads to brassinolide biosynthesis.  (+info)

Inhibition of the plant cytokinin transduction pathway by bacterial histidine kinase inhibitors in Catharanthus roseus cell cultures. (7/100)

We describe the isolation of two Catharanthus roseus cDNAs encoding proteins putatively involved in the final steps of a 'histidine-to-aspartate' phosphorelay in cytokinin (CK) signaling. The expression of one of these genes, CrRR1, was specifically up-regulated by CKs in C. roseus cell suspensions. We used this system as a biological model to test the activity of bacterial histidine kinase inhibitors. Our data demonstrate that these inhibitors are active on the CK transduction pathway and represent powerful chemical tools to study hormone signal transduction in plants. Moreover, these data suggest a strong conservation of functional features between prokaryotic and plant signaling pathways utilizing histidine kinases.  (+info)

Molecular characterization of recombinant T1, a non-allergenic periwinkle (Catharanthus roseus) protein, with sequence similarity to the Bet v 1 plant allergen family. (8/100)

More than 25% of the population suffer from Type I allergy, an IgE-mediated hypersensitivity disease. Allergens with homology to the major birch ( Betula verrucosa ) pollen allergen, Bet v 1, belong to the most potent elicitors of IgE-mediated allergies. T1, a cytokinin-inducible cytoplasmic periwinkle ( Catharanthus roseus ) protein, with significant sequence similarity to members of the Bet v 1 plant allergen family, was expressed in Escherichia coli. Recombinant T1 (rT1) did not react with IgE antibodies from allergic patients, and failed to induce basophil histamine release and immediate-type skin reactions in Bet v 1-allergic patients. Antibodies raised against purified rT1 could be used for in situ localization of natural T1 by immunogold electron microscopy, but did not cross-react with most of the Bet v 1-related allergens. CD analysis showed significant differences regarding secondary structure and thermal denaturation behaviour between rT1 and recombinant Bet v 1, suggesting that these structural differences are responsible for the different allergenicity of the proteins. T1 represents a non-allergenic member of the Bet v 1 family that may be used to study structural requirements of allergenicity and to engineer hypo-allergenic plants by replacing Bet v 1-related allergens for primary prevention of allergy.  (+info)