Systemic hormonal, electrolyte, and substrate changes after non-thermal limb injury in children. (17/3332)

Relatively little is known regarding the hormonal changes after injury in children. Adult protocols are often applied to children, although the latter often have different physiological responses to trauma. Twenty children with an angulated displaced fracture of the radius and/or ulna (injury severity score 9) were studied prospectively for changes in adrenaline, noradrenaline, cortisol, angiotensin II, arginine vasopressin, urea, electrolytes, and glucose. Two blood samples were taken: one an arrival at the accident and emergency department and one preoperatively several hours later. There were marked increases in adrenaline, noradrenaline, cortisol, and arginine vasopressin above the normal range. Five (25%) cases demonstrated greater early increases in adrenaline than those reported for adult injuries of similar severity. Early hypokalaemia in four cases had corrected towards normal within a few hours, without potassium supplementation.  (+info)

Actions of vasoactive intestinal peptide on the rat adrenal zona glomerulosa. (18/3332)

Previous studies, by this group and others, have shown that vasoactive intestinal peptide (VIP) stimulates aldosterone secretion, and that the actions of VIP on aldosterone secretion by the rat adrenal cortex are blocked by beta adrenergic antagonists, suggesting that VIP may act by the local release of catecholamines. The present studies were designed to test this hypothesis further, by measuring catecholamine release by adrenal capsular tissue in response to VIP stimulation. Using intact capsular tissue it was found that VIP caused a dose-dependent increase in aldosterone secretion, with a concomitant increase in both adrenaline and noradrenaline release. The effects of VIP on aldosterone secretion were inhibited by atenolol, a beta1 adrenergic antagonist, but not by ICI-118,551, a beta2 adrenergic antagonist. Binding studies were carried out to investigate VIP receptors. It was found that adrenal zona glomerulosa tissue from control rats contained specific VIP binding sites (Bmax 853+/-101 fmol/mg protein; Kd 2.26+/-0.45 nmol/l). VIP binding was not displaced by ACTH, angiotensin II or by either of the beta adrenergic antagonists. The response to VIP in adrenals obtained from rats fed a low sodium diet was also investigated. Previous studies have found that adrenals from animals on a low sodium diet exhibit increased responsiveness to VIP. Specific VIP binding sites were identified, although the concentration or affinity of binding sites in the low sodium group was not significantly different from the controls. In the low sodium group VIP was found to increase catecholamine release to the same extent as in the control group, however, in contrast to the control group, the adrenal response to VIP was not altered by adrenergic antagonists in the low sodium group. These data provide strong support for the hypothesis that VIP acts by the local release of catecholamines in adrenal zona glomerulosa tissue in normal animals. It does not appear that VIP acts through the same mechanism in animals maintained on a low sodium diet. The mechanism by which VIP stimulates aldosterone in this group remains to be determined.  (+info)

Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. (19/3332)

BACKGROUND: Chronic heart failure is one of a number of disorders associated with the development of a wasting syndrome. The precise mechanisms of this remain unknown, but previous studies have suggested a role for immune and neurohormonal factors. METHODS: We aimed to investigate in detail the differences in body composition (dual X-ray absorptiometry) and the relationship to candidate biochemical factors of the immune, neurohormonal and metabolic systems in 15 healthy controls, 36 stable non-cachectic and 18 cachectic patients with chronic heart failure. RESULTS: Non-cachectic patients showed reduced leg lean tissue (-9.1%, P<0.01) compared to controls. Cachectic patients had significantly reduced lean (-21.0% vs controls, -19.9% vs non-cachectics), fat (-33.0% vs controls, -37. 0% vs non-cachectics) and bone tissue (-17.5% vs controls, -15.9% vs non-cachectics) (all P<0.0001). Cachectic patients showed a significantly increased cortisol/dehydroepiandrosterone ratio (+203% vs controls, P<0.0001; +89% vs non-cachectics, P=0.0011) and increased cytokine levels (TNF-alpha, soluble TNF-receptor 1, interleukin-6). The levels of catabolic hormones and cytokines correlated significantly with reduced muscle and fat tissue content and reduced bone mass. CONCLUSION: Peripheral loss of muscle tissue is a general finding in chronic heart failure. The wasting in cardiac cachexia affects all tissue compartments and is significantly related to neurohormonal and immunological abnormalities.  (+info)

Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. (20/3332)

Catecholamine neurotransmitters are synthesized by hydroxylation of tyrosine to L-dihydroxyphenylalanine (L-Dopa) by tyrosine hydroxylase (TH). The elimination of TH in both pigmented and albino mice described here, like pigmented TH-null mice reported previously (Kobayashi et al., 1995; Zhou et al., 1995), demonstrates the unequivocal requirement for catecholamines during embryonic development. Although the lack of TH is fatal, TH-null embryos can be rescued by administration of catecholamine precursors to pregnant dams. Once born, TH-null pups can survive without further treatment until weaning. Given the relatively rapid half-life of catecholamines, we expected to find none in postnatal TH-null pups. Despite the fact that the TH-null pups lack TH and have not been supplemented with catecholamine precursers, catecholamines are readily detected in our pigmented line of TH-null mice by glyoxylic acid-induced histofluorescence at postnatal day 7 (P7) and P15 and quantitatively at P15 in sympathetically innervated peripheral organs, in sympathetic ganglia, in adrenal glands, and in brains. Between 2 and 22% of wild-type catecholamine concentrations are found in these tissues in mutant pigmented mice. To ascertain the source of the catecholamine, we examined postnatal TH-null albino mice that lack tyrosinase, another enzyme that converts tyrosine to L-Dopa but does so during melanin synthesis. In contrast to the pigmented TH-null mice, catecholamine histofluorescence is undetectable in postnatal albino mutants, and the catecholamine content of TH-null pups lacking tyrosinase is 18% or less than that of TH-null mice with tyrosinase. Thus, these extraordinary circumstances reveal that tyrosinase serves as an alternative pathway to supply catecholamines.  (+info)

Responses of blood pressure and catecholamine metabolism to high salt loading in endothelin-1 knockout mice. (21/3332)

The molecular mechanism responsible for salt sensitivity is poorly understood. Mice heterozygous for the null mutation of the endothelin-1 (ET-1) gene, Edn1, may be a potential tool for studying this mechanism, because they have elevated blood pressure and disturbances in central sympathetic nerve regulation. In the present study, we used this mouse model to examine the degree to which ET-1 contributes to the responses of blood pressure and catecholamine metabolism to high salt loading. Male Edn1+/- heterozygous mice and Edn1+/+ wild-type littermates were given either a high salt (8%) or a normal salt (0.7%) diet for 4 wk. During the normal diet, renal ET-1 levels in Edn1+/- mice were approximately 50% lower than ET-1 levels in wild-type mice, whereas the high salt diet decreased renal ET-1 levels by about 50% in both Edn1+/- and wild-type mice. The high salt diet significantly increased urinary sodium excretion and fractional excretion of sodium (FENa) but did not affect circulating plasma volume, serum electrolytes, creatinine clearance, or systemic blood pressure. In addition, urinary norepinephrine and normetanephrine excretion were significantly increased, indicating that salt loading can increase sympathetic nerve activity in normal mice. These responses to salt loading did not differ between Edn1+/- mice and their wild-type littermates. We conclude that physiological changes in ET-1 production do not affect the responses of blood pressure and catecholamine metabolism to salt loading, although the renal ET-1 content is decreased by salt loading.  (+info)

Catecholamine production in patients with gastroenteropancreatic neuroendocrine tumors. (22/3332)

OBJECTIVE: Amine precursor uptake and decarboxylation is a classical feature of gastroenteropancreatic (GEP) neuroendocrine tumors (NET). Production of catecholamines was studied in GEP NET and non-NET patients. DESIGN: A cross-sectional study was undertaken. METHODS: We studied catecholamine and metabolite secretion in 115 consecutive GEP NET patients and in 20 patients with non-NET. After specific extraction, vanilmandelic acid, homovanilic acid, catecholamines (norepinephrine, epinephrine, dopamine) and methoxylated derivates (metanephrine, normetanephrine, methoxytyramine) in urinary extracts were analyzed by high performance liquid chromatography. Results were indexed to the 24-h urinary creatinine levels. RESULTS: Among the 115 patients with NET, 9 (8%) had an increase of at least one urinary catecholamine or metabolite; in 7 out of the 9 the increase was slight being less than twice the upper value of the normal range. Elevated urinary dopamine (3 patients), methoxytyramine (6 patients), norepinephrine (2 patients) and normetanephrine (2 patients) were found. No increased urinary excretion of epinephrine nor metanephrine was observed. An adrenal mass existed in one of these nine patients but metaiodobenzylguanidine scintigraphy was negative as was immunohistochemistry for epithelial markers. None of the 20 patients with non-NET demonstrated an increased excretion of catecholamine or metabolites. No relationships were found between catecholamine and metabolite excretions and patients' tumor and treatment characteristics. CONCLUSION: Production of catecholamines and metabolites is a rare event in GEP NET patients. Histological results, including positive immunohistochemistry for epithelial markers may help to diagnose GEP NET.  (+info)

Mechano- and chemoreceptor modulation of renal sympathetic nerve activity at birth in fetal sheep. (23/3332)

Physiological responses at birth include increases in heart rate (HR), blood pressure, sympathetic nerve activity, and circulating vasoactive peptides. The factors mediating these responses are not known. To test the hypothesis that afferent input from peripheral mechanoreceptors (arterial and cardiopulmonary baroreceptors) and chemoreceptors contribute to the sympathoexcitatory and hormonal responses at birth, we studied the effects of sinoaortic denervation (SAD) and SAD with vagotomy (Vx) on changes in HR, mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and catecholamine, arginine vasopressin (AVP), and ANG II levels at birth in term sheep. One hour after delivery by cesarean section, RSNA increased by 168 +/- 49 and 192 +/- 32% (relative to fetal values) in SAD and SAD-Vx animals, respectively. Significant increases in HR (18 +/- 5 and 20 +/- 6%) and MABP (24 +/- 4 and 20 +/- 5%) were also observed 1 h after delivery in SAD and SAD-Vx lambs, respectively. These responses are similar to those seen in intact sheep delivered at the same gestational age. AVP levels markedly increased after birth (19.8 +/- 6.7 to 136.1 +/- 75.9 pg/ml) in SAD-Vx lambs, whereas SAD animals displayed no change in AVP concentrations. Plasma ANG II also did not change after birth in either group, although levels were consistently higher (P < 0.01) in SAD compared with SAD-Vx animals. In the presence of SAD, Vx resulted in significantly greater plasma levels of norepinephrine, although levels did not change after birth in either group. The epinephrine responses at birth were similar in both groups of animals. The present data suggest that afferent input from peripheral chemoreceptors and mechanoreceptors contributes little to the hemodynamic and sympathetic responses after delivery by cesarean section. On the other hand, these peripheral mechanisms appear to be involved in modulating endocrine responses at birth.  (+info)

A current activated on depletion of intracellular Ca2+ stores can regulate exocytosis in adrenal chromaffin cells. (24/3332)

Exocytosis in excitable cells is strongly coupled to Ca2+ entry through voltage-gated channels but can be evoked by activation of membrane receptors that release Ca2+ from inositol 1,4, 5-trisphosphate-sensitive internal stores. In many cell types, depletion of Ca2+ stores activates Ca2+ influx across the plasma membrane, a process known as capacitative or store-operated Ca2+ entry. This influx is mediated by a number of voltage-independent, Ca2+-selective currents. In addition to replenishing Ca2+ stores, these currents are hypothesized to play an important role in agonist-evoked secretion in nonexcitable cells, although this has not been confirmed experimentally. The existence and physiological function of such currents in excitable cells is not known. Using the capacitance detection technique to monitor exocytosis, we provide direct experimental evidence that a similar mechanism exists in bovine adrenal chromaffin cells. Depletion of intracellular Ca2+ stores with thapsigargin, a SERCA pump inhibitor, or with BAPTA, an exogenous Ca2+ chelator, activates a small-amplitude, voltage-independent current that is carried by Ca2+ and Na+ ions. Ca2+ entry through this pathway is sufficient to stimulate exocytosis at negative membrane potentials. In addition, depolarization-evoked exocytosis is markedly facilitated on activation of the current. These data suggest that excitable cells possess a store-operated Ca2+ influx mechanism that may both directly trigger exocytosis and modulate excitation-secretion coupling.  (+info)