Different expression of catecholamine transporters in phaeochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. (9/29)

OBJECTIVE: Phaeochromocytomas in patients with multiple endocrine neoplasia type 2 (MEN 2) produce adrenaline, whereas those with von Hippel-Lindau (VHL) syndrome do not. This study assessed whether these distinctions relate to differences in expression of the transporters responsible for uptake and storage of catecholamines - the noradrenaline transporter and the vesicular monoamine transporters (VMAT 1 and VMAT 2). METHODS: Tumour tissue and plasma samples were obtained from 31 patients with hereditary phaeochromocytoma - 18 with VHL syndrome and 13 with MEN 2. We used quantitative PCR, Western blotting, electron microscopy, immunohistochemistry and measurements of plasma and tumour catecholamines to assess differences in expression of the transporters in noradrenaline-producing vs adrenaline-producing hereditary tumours. These differences were compared with those in a further group of 26 patients with non-syndromic phaeochromocytoma. RESULTS: Adrenaline-producing phaeochromocytomas in MEN 2 patients expressed more noradrenaline transporter mRNA and protein than noradrenaline-producing tumours in VHL patients. In contrast, there was greater expression of VMAT 1 in VHL than MEN 2 tumours, while expression of VMAT 2 did not differ significantly. These differences were associated with larger numbers of storage vesicles and higher tissue contents of catecholamines in MEN 2 than in VHL tumours. Differences in expression of the noradrenaline transporter were weaker, and those of VMAT 1 and VMAT 2 stronger, in noradrenaline and adrenaline-producing non-syndromic than in hereditary tumours. CONCLUSIONS: The findings show that, in addition to differences in catecholamine biosynthesis, phaeochromocytomas in MEN 2 and VHL syndrome also differ in expression of the transporters responsible for uptake and vesicular storage of catecholamines.  (+info)

Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. (10/29)

Effects of the sulfhydryl reagent methylmethanethiosulfonate (MMTS) on functions of organic cation transporters (OCTs) were investigated. Currents induced by 10 mM choline [I(max(choline))] in Xenopus laevis oocytes expressing rat OCT1 (rOCT1) were increased four- to ninefold after 30-s incubation with 5 mM MMTS whereas I(max(choline)) by rat OCT2 was 70% decreased. MMTS activated the rOCT1 transporter within the plasma membrane without changing stoichiometry between translocated charge and cation. After modification of oocytes expressing rOCT1 or rOCT2 with MMTS, I(0.5(choline)) values for choline-induced currents were increased. For rOCT1 it was shown that MMTS increased I(0.5) values for different cations by different degrees. Mutagenesis of individual cysteine residues in rOCT1 revealed that modification of cysteine 322 in the large intracellular loop, and of cysteine 451 at the transition of the transmembrane alpha-helix (TMH) 10 to the short intracellular loop between the TMH 10 and 11 is responsible for the observed effects of MMTS. After replacement of cysteine 451 by methionine, the IC(50(choline)) for choline to inhibit MPP uptake by rOCT1 was increased whereas the I(0.5(choline)) value for choline-induced current remained unchanged. At variance, in double mutant Cys322Ser, Cys451Met, I(0.5(choline)) was increased compared with rOCT1 wild-type whereas in the single mutant Cys322Ser I(0.5(choline)) was not changed. The data suggest that modification of rOCT1 at cysteines 322 and 451 leads to an increase in turnover. They indicate that cysteine 451 in rOCT1 interacts with the large intracellular loop and that cysteine 451 in both rOCT1 and rOCT2 is critical for the affinity of choline.  (+info)

Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. (11/29)

The goal of this study was to determine the effects of genetic variation in the organic cation transporter 1, OCT1, on the pharmacokinetics of the antidiabetic drug, metformin. Twenty healthy volunteers with known OCT1 genotype agreed to participate in the study. Each subject received two oral doses of metformin followed by collection of blood and urine samples. OCT1 genotypes had a significant (P<0.05) effect on metformin pharmacokinetics, with a higher area under the plasma concentration-time curve (AUC), higher maximal plasma concentration (Cmax), and lower oral volume of distribution (V/F) in the individuals carrying a reduced function OCT1 allele (R61C, G401S, 420del, or G465R). The effect of OCT1 on metformin pharmacokinetics in mice was less than in humans possibly reflecting species differences in hepatic expression level of the transporter. Our studies suggest that OCT1 genotype is a determinant of metformin pharmacokinetics.  (+info)

High-affinity cation binding to organic cation transporter 1 induces movement of helix 11 and blocks transport after mutations in a modeled interaction domain between two helices. (12/29)

Voltage-clamp fluorometry was performed with a cysteine-deprived mutant of rat organic cation transporter 1 (rOCT1) in which Phe483 in transmembrane alpha-helix (TMH) 11 close to the extracellular surface was replaced by cysteine and labeled with tetramethylrhodamine-6-maleimide. Potential-dependent fluorescence changes were observed that were sensitive to presence of substrates choline, tetraethylammonium (TEA), and 1-methyl-4-phenylpyridinium (MPP) and of the nontransported inhibitor tetrabutylammonium (TBuA). Using potential-dependent fluorescence changes as readout, one high-affinity binding site per substrate and two high-affinity binding sites for TBuA were identified in addition to the previously described single interaction sites. In a structure model of rOCT1 with an inward open cleft that was derived from a known crystal structure of lacY permease, Phe483 is close to Trp147 in TMH 2. In contrast, in a model with an outward open cleft these amino acids are far apart. After replacement of Phe483 or Trp147 by cysteine or serine, high-affinity binding of TBuA leads to inhibition of MPP or TEA uptake, whereas it has no effect on cation uptake by wild-type rOCT1. Coexisting high-affinity cation binding sites in organic cation transporters may collect low concentration xenobiotics and drugs; however, translocation including transitions between outward- and inward-oriented conformations may only be induced when a low-affinity cation binding site is loaded. We propose that cations bound to high-affinity sites may be translocated together with cations bound to low-affinity sites or that they may block the translocation mechanism.  (+info)

Hepatic uptake and excretion of (-)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidi no]ethyl}-4-fluorobenzamide (YM758), a novel if channel inhibitor, in rats and humans. (13/29)

 (+info)

Organic anion transporter OAT1 is involved in renal handling of citrulline. (14/29)

 (+info)

Identification of human metabolites of (-)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidi no]ethyl}-4-fluorobenzamide (YM758), a novel If channel inhibitor, and investigation of the transporter-mediated renal and hepatic excretion of these metabolites. (15/29)

 (+info)

Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. (16/29)

Renal tubular secretion of cationic drugs is dominated by two classes of organic cation transporters, OCT2/SLC22A2 and MATE1/SLC47A1, localized to the basolateral and brush-border membranes of the renal tubular epithelial cells, respectively. However, little is known about the expression and function of these transporters in acute cholestasis. Systemic clearance of cimetidine was significantly higher in rats with bile duct ligation (BDL) for 24 hours than in sham-operated rats, with no significant changes in the volume of distribution between the groups. In addition, net tubular secretory clearance of cimetidine was significantly higher in the BDL rats compared with the sham rats, with no significant changes in the glomerular filtration rate. Moreover, the renal tissue-to-plasma concentration ratio of cimetidine was elevated in BDL rats, although the renal tissue-to-urine clearance ratio of cimetidine was not different between the two groups. The expression level of basolateral organic cation transporter rOCT2 protein in the kidney cortex was markedly higher in BDL rats than that in the sham rats, but that of H+/organic cation antiporter rMATE1 protein in the brush-border membranes was not significantly different between the two groups. These results demonstrate that the renal tubular secretion of cimetidine was increased by acute cholestasis, and this increase was attributable to elevated expression levels of rOCT2 but not of rMATE1 in the rat.  (+info)