Unilateral cataplexy associated with systemic lupus erythematosus. (1/120)

A patient with systemic lupus erythematosus (SLE) developed attacks of unilateral cataplexy precipitated by laughter. Unilateral cataplexy has not been described previously in detail and its association with SLE is unique. The clinical details, investigations, and diagnostic criteria are discussed and a causal relationship between cataplexy and SLE is suggested.  (+info)

Sulpiride, a D2/D3 blocker, reduces cataplexy but not REM sleep in canine narcolepsy. (2/120)

Cataplexy, an abnormal manifestation of REM sleep atonia, is currently treated with antidepressants. These medications also reduce physiological REM sleep and induce nocturnal sleep disturbances. Because a recent work on canine narcolepsy suggests that the mechanisms for triggering cataplexy are different from those for REM sleep, we hypothesized that compounds which act specifically on cataplexy, but not on REM sleep, could be developed. Canine studies also suggest that the dopamine D2/D3 receptor mechanism is specifically involved in the regulation of cataplexy, but little evidence suggests that this mechanism is important for REM sleep regulation. We therefore assessed the effects of sulpiride, a commonly used D2/D3 antagonist, on cataplexy and sleep in narcoleptic canines to explore the possible clinical application of D2/D3 antagonists for the treatment of human narcolepsy. Both acute and chronic oral administration of sulpiride (300 mg/dog, 600 mg/dog) significantly reduced cataplexy without noticeable side effects. Interestingly, the anticataplectic dose of sulpiride did not significantly reduce the amount of REM sleep. Sulpiride (and other D2/D3 antagonists) may therefore be an attractive new therapeutic indication in human narcolepsy.  (+info)

Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. (3/120)

Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  (+info)

Health-related quality of life in narcolepsy. (4/120)

Narcolepsy is a chronic sleep disorder characterised by symptoms of excessive daytime sleepiness and cataplexy. The aim of this study was to describe the health-related quality of life of people with narcolepsy residing in the UK. The study comprised a postal survey of 500 members of the UK narcolepsy patient association, which included amongst other questions the UK Short Form 36 (SF-36), the Beck Depression Inventory (BDI), and the Ullanlinna Narcolepsy Scale (UNS). A total of 305 questionnaires were included in the final analysis. The results showed that the subjects had significantly lower median scores on all eight domains of the SF-36 than normative data, and scored particularly poorly for the domains of role physical, energy/vitality, and social functioning. The BDI indicated that 56.9% of subjects had some degree of depression. In addition, many individuals described limitations on their education, home, work and social life caused by their symptoms. There was little difference between the groups receiving different types of medication. This study is the largest of its type in the UK, although the limitations of using a sample from a patient association have been recognised. The results are consistent with studies of narcolepsy in other countries in demonstrating the extensive impact of this disorder on health-related quality of life.  (+info)

Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. (5/120)

Orexin-A (OX-A) and orexin-B (OX-B) (hypocretin 1 and hypocretin 2) are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. The locus coeruleus (LC) receives the densest extrahypothalamic projections of the orexin (OX) system. Recent evidence suggests that descending projections of the LC have a facilitatory role in the regulation of muscle tone. The pontine inhibitory area (PIA), located ventral to LC, receives a moderate OX projection and participates in the suppression of muscle tone in rapid-eye-movement sleep. We have examined the role of OX-A and -B in muscle-tone control using microinjections (0.1 microM to 1 mM, 0.2 microl) into the LC and PIA in decerebrate rats. OX-A and -B microinjections into the LC produced ipsi- or bilateral hindlimb muscle-tone facilitation. The activity of LC units was correlated with the extent of hindlimb muscle-tone facilitation after OX microinjections (100 microM, 1 microl) into fourth ventricle. Microinjections of OX-A and -B into the PIA produced muscle-tone inhibition. We did not observe any significant difference in the effect of OX-A and -B on muscle tone at either site. Our data suggest that OX release activates LC units and increases noradrenergic tonus in the CNS. Moreover, OX-A and -B may also regulate the activity of pontine cholinoceptive and cholinergic neurons participating in muscle-tone suppression. Loss of OX function may therefore disturb both facilitatory and inhibitory motor processes.  (+info)

MAO-A and COMT polymorphisms and gene effects in narcolepsy. (6/120)

Narcolepsy presents one of the tightest associations with a specific HLA antigen (DQB1*0602) but there is strong evidence that non-HLA genes also confer susceptibility. Recent observations have implicated the hypocretin/orexin system in narcolepsy in both humans and animals. In addition, the implication of monoaminergic systems in the pathophysiology of narcolepsy is well established and a significant association between the monoamine oxydase-A (MAO-A) gene and human narcolepsy has recently provided a possible genetic link. We investigated polymorphisms of MAO-A and catechol-O-methyltransferase (COMT) in 97 Caucasians with well-defined narcolepsy-cataplexy and sought for genotypic effects on disease symptoms. No evidence of association between genotype or allele frequencies of both MAO-A or COMT gene and narcolepsy was found. However, a sexual dimorphism and a strong effect of COMT genotype on disease severity were found. Women narcoleptics with high COMT activity fell asleep twice as fast as those with low COMT activity during the multiple sleep latency test (MSLT) while the opposite was true for men. COMT genotype also strongly affected the presence of sleep paralysis and the number of REM sleep onsets during the MSLT. In agreement with well-documented pharmacological results in canine narcolepsy, this study reports the first genetic evidence for the critical involvement of the dopaminergic and/or noradrenergic systems in human narcolepsy.  (+info)

Childhood onset of narcolepsy-cataplexy syndrome in Turkey: clinical and genetic study. (7/120)

Narcolepsy is a disabling sleep disorder characterized by excessive daytime sleepiness and abnormal manifestations of rapid eye movement (REM) sleep including cataplexy, sleep paralysis and hypnagogic hallucinations. It is known to be complex disorder in which both genetic predisposition and environmental factors play a role. In humans, susceptibility to narcolepsy is tightly associated with a specific HLA allele, DQB1*0602. In this report, we took advantage of the ongoing genetic study in Turkish narcoleptic patients to document clinical and genetic data of eight patients whose onset of symptoms were in the childhood period.  (+info)

Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. (8/120)

The discovery that hypocretins are involved in narcolepsy, a disorder associated with excessive daytime sleepiness, cataplexy, and unusually rapid transitions to rapid eye movement sleep, opens a new field of investigation in the area of disorders of sleep and activation. Hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) (also called orexin-A and orexin-B) are newly discovered neuropeptides processed from a common precursor. Hypocretin containing cells are located exclusively in the lateral hypothalamus, with widespread projections within the central nervous system. The role of the hypocretin system in other disorders causing excessive daytime sleepiness is more uncertain. This study reports the findings of a prospective study measuring cerebrospinal fluid concentrations of hypocretin-1 and hypocretin-2 in HLA DQB1*0602 positive narcolepsy with cataplexy, monosymptomatic narcolepsy, and primary hypersomnia. The results confirmed the previous observations, that hcrt-1 is deficient in narcolepsy and for the first time report very low levels of hcrt-1 in primary hypersomnia. It is also reported for the first time that there is a generalised defect in hcrt-2 transmission in all three of these clinical entities compared with controls.  (+info)