Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. (1/57)

The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1beta-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7x10(2) M(-1).s(-1). The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases.  (+info)

Cytokine regulation of human intestinal primary epithelial cell susceptibility to Fas-mediated apoptosis. (2/57)

The regulatory mechanisms of nontransformed intestinal epithelial cell apoptosis have not been thoroughly investigated. We determined the susceptibility and mechanism of Fas-mediated apoptosis in nontransformed human intestinal epithelial cells (HIPEC) in the presence and absence of inflammatory cytokines. Despite ample expression of Fas, HIPEC were relatively insensitive to Fas-mediated apoptosis in that agonist anti-Fas antibody (CH11) induced a <25% increase in HIPEC apoptosis. Pretreatment of HIPEC with interferon (IFN)-gamma, but not tumor necrosis factor-alpha or granulocyte-macrophage colony-stimulating factor, significantly increased CH11-induced apoptosis of these cells without increasing Fas expression. Increased apoptosis correlated with increased caspase 3 activation but not expression of procaspase 3. Also, there was a significant delay in the onset of Fas-mediated apoptosis in HIPEC, which correlated with the generation of an activated caspase 3 p22/20 subunit. HIPEC required both initiator caspases 8 and 9 activity but expressed significantly less of the zymogen form of these caspases than did control cells. IFN-gamma-mediated sensitization of HIPEC occurred upstream of caspase 9 activation and correlated with a small increase in procaspase 8 expression (<1-fold increase) and a significant increase in expression of an intermediate form (p35) of caspase 4 (3.3-fold increase).  (+info)

Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. (3/57)

MOTIVATION: The Monte Carlo fragment insertion method for protein tertiary structure prediction (ROSETTA) of Baker and others, has been merged with the I-SITES library of sequence structure motifs and the HMMSTR model for local structure in proteins, to form a new public server for the ab initio prediction of protein structure. The server performs several tasks in addition to tertiary structure prediction, including a database search, amino acid profile generation, fragment structure prediction, and backbone angle and secondary structure prediction. Meeting reasonable service goals required improvements in the efficiency, in particular for the ROSETTA algorithm. RESULTS: The new server was used for blind predictions of 40 protein sequences as part of the CASP4 blind structure prediction experiment. The results for 31 of those predictions are presented here. 61% of the residues overall were found in topologically correct predictions, which are defined as fragments of 30 residues or more with a root-mean-square deviation in superimposed alpha carbons of less than 6A. HMMSTR 3-state secondary structure predictions were 73% correct overall. Tertiary structure predictions did not improve the accuracy of secondary structure prediction.  (+info)

Interferon-gamma-induced sensitization of colon carcinomas to ZD9331 targets caspases, downstream of Fas, independent of mitochondrial signaling and the inhibitor of apoptosis survivin. (4/57)

We have demonstrated previously a Fas-dependent component in thymineless death of human colon carcinoma cells. Importantly, the cytotoxic effects of thymidine deprivation induced by 5-fluorouracil (FUra) combined with leucovorin (LV) was enhanced by IFN-gamma, and the synergism was shown to be dependent on Fas, FUra-induced DNA damage, and independent of p53. Subsequently we examined the potential for synergistic interactions between IFN-gamma and the specific thymidylate synthase inhibitor, ZD9331. IFN-gamma sensitized colon carcinomas to ZD9331-induced apoptosis and loss in clonogenic survival, also dependent on ZD9331-induced DNA damage, independent of p53. Synergism occurred in HCT116, demonstrating previously RNA-mediated FUra/LV cytotoxicity that could not be potentiated by IFN-gamma. Manipulation of the Fas death receptor pathway from the level of the receptor (Nok1/Nok2, Fas overexpression, and DN-FADD) to the mitochondria (Bcl-xL and Bcl-2) did not modulate ZD9331 +/- IFN-gamma-induced cytotoxicity in HT29, with the exception that Nok1/Nok2-blocking antibodies partially protected HT29 from the cytotoxic activity of ZD9331 alone. However, IFN-gamma alone (but not ZD9331) up-regulated the expression of caspases -3, -4, -7, and -8, and in combination with ZD9331 demonstrated enhanced caspase activation and cleavage of poly(ADP-ribose) polymerase that was not prevented by overexpression of Bcl-2. Additionally, IFN-gamma increased the activity of the proteasome in HT29, leading to selective down-regulation of the antiapoptotic protein survivin, whereas simultaneously increasing Fas expression. However, reduction in the survivin:Fas ratio by transfection of survivin small interfering RNA and/or overexpression of Fas did not affect sensitivity of HT29 to ZD9331 +/- IFN-gamma. Data demonstrate that IFN-gamma combined with ZD9331 is synergistic in additional cell lines that demonstrate RNA-mediated FUra/LV cytotoxicity, and that a major target of interaction is at the level of caspases, downstream of Fas, and independent of involvement of either the mitochondria or survivin.  (+info)

Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. (5/57)

Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-beta (Abeta)-induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Abeta, and Abeta-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease.  (+info)

Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. (6/57)

The granules of mast cells and other inflammatory cells are known to be rich in zinc (Zn), a potent caspase inhibitor. The functions of granular Zn, its mechanism of uptake, and its relationship to caspase activation in apoptosis are unclear. The granules of a variety of mast cell types fluoresced intensely with the Zn-specific fluorophore Zinquin, and fluorescence was quenched by functional depletion of Zn using a membrane-permeable Zn chelator N, N, N', N'-tetrakis (2-pyridyl-methyl)ethylenediamine (TPEN). Zn levels were also depleted by various mast cell activators, including IgE/anti-IgE, and Zn was rapidly replenished during subsequent culture, suggesting an active uptake mechanism. In support of the latter, mast cells contained high levels of the vesicular Zn transporter ZnT(4), especially in the more apical granules. Immunofluorescence and immunogold labeling studies revealed significant pools of procaspase-3 and -4 in mast cell granules and their release during degranulation. Functional depletion of Zn by chelation with TPEN, but not by degranulation, resulted in greatly increased susceptibility of mast cells to toxin-induced caspase activation, as detected using a fluorogenic substrate assay. Release of caspases during degranulation was accompanied by a decreased susceptibility to toxins. Zn depletion by chelation, but not by degranulation, also resulted in nuclear translocation of the antiapoptotic, proinflammatory transcription factor NF-kappaB. These findings implicate a role for ZnT(4) in mast cell Zn homeostasis and suggest that granule pools of Zn may be distinct from those regulating activation of procaspase-3 and NF-kappaB.  (+info)

Altered patterns of gene expression specific to thoracic aortic aneurysms: microarray analysis of surgically resected specimens. (7/57)

Changes in the expression levels of several genes have been described in aortic aneurysm specimens, however, the spectrum of diverse molecular alterations remains to be elucidated. We attempted to identify key molecules that modulate the pathogenesis of aortic aneurysm, using a complimentary DNA microarray carrying approximately 13,000 human genes. Segments of thoracic aortic aneurysms (TAA) and adjacent normal thoracic aortic tissues without aneurysmal changes (NTA) were obtained from 20 patients undergoing graft surgery. RNA obtained from five pairs of TAA and NTA samples was compared to determine aneurysm-specific alterations using microarray. Further, the expression levels of several genes of interest were verified in the remaining specimens by real-time reverse transcription-polymerase chain reaction (RT-PCR). In microarray assays, several types of the matrix metalloproteinases were upregulated as reported previously. Also, 220 genes suggested to be involved in protein degradation, inflammation, apoptosis, stress response, intracellular signaling, and other processes were significantly upregulated. Many of these genes have not been previously implicated in cardiovascular disease. The real time RT-PCR independently confirmed that the expression levels of MMP-2, MMP-9, ADAMTS-1, and caspase 4 were consistently increased in TAA. The results indicate that many genes are involved in a complicated manner in the pathogenesis of TAA. Investigation of these genes will help clarify the pathogenesis of this disease, and may lead to the discovery of novel therapeutic targets.  (+info)

Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. (8/57)

RAS is a small GTP binding protein mutated in approximately 30% human cancer. Despite its important role in the initiation and progression of human cancer, the underlying mechanism of RAS-induced human epithelial transformation remains elusive. In this study, we probe the cellular and molecular mechanisms of RAS-mediated transformation, by profiling two human ovarian epithelial cell lines. One cell line was immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase (T29), while the second cell line was transformed with an additional oncogenic ras(V12) allele (T29H). In total, 32 proteins associated with RAS-mediated transformation have been identified using peptide mass fingerprinting. These protein targets are involved in several cellular pathways, including metabolism, redox balance, calcium signaling, apoptosis, and cellular methylation. One such target, the 40 kDa procaspase 4 is significantly upregulated at the protein level in RAS-transformed T29H cells, related directly to signaling through MEK, but not PI3 kinase. Cellular caspase 4 activity is, however, suppressed in the T29H cells, suggesting that the maturation process of caspase 4 is abrogated in RAS-transformed T29H cells. Consistent with this notion, transformed T29H cells were less susceptible to the toxic effects of anti-Fas antibody than were immortalized, nontransformed T29 cells, associated with less activation of caspase 4. This study demonstrates that functional proteomic analysis of a genetically defined cancer model provides a powerful approach toward systematically identifying cellular targets associated with oncogenic transformation.  (+info)