Inhibition of NF-kappa B activity in human T lymphocytes induces caspase-dependent apoptosis without detectable activation of caspase-1 and -3. (1/222)

NF-kappa B is involved in the transcriptional control of various genes that act as extrinsic and intrinsic survival factors for T cells. Our findings show that suppression of NF-kappa B activity with cell-permeable SN50 peptide, which masks the nuclear localization sequence of NF-kappa B1 dimers and prevents their nuclear localization, induces apoptosis in resting normal human PBL. Inhibition of NF-kappa B resulted in the externalization of phosphatidylserine, induction of DNA breaks, and morphological changes consistent with apoptosis. DNA fragmentation was efficiently blocked by the caspase inhibitor Z-VAD-fmk and partially blocked by Ac-DEVD-fmk, suggesting that SN50-mediated apoptosis is caspase-dependent. Interestingly, apoptosis induced by NF-kappa B suppression, in contrast to that induced by TPEN (N,N,N',N'-tetrakis [2-pyridylmethyl]ethylenediamine) or soluble Fas ligand (CD95), was observed in the absence of active death effector proteases caspase-1-like (IL-1 converting enzyme), caspase-3-like (CPP32/Yama/apopain), and caspase-6-like and without cleavage of caspase-3 substrates poly(ADP-ribose) polymerase and DNA fragmentation factor-45. These findings suggest either low level of activation is required or that different caspases are involved. Preactivation of T cells resulting in NF-kappa B nuclear translocation protected cells from SN50-induced apoptosis. Our findings demonstrate an essential role of NF-kappa B in survival of naive PBL.  (+info)

Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and -8. (2/222)

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Although the pathogenesis of AD is unknown, it is widely accepted that AD is caused by extracellular accumulation of a neurotoxic peptide, known as Abeta. Mutations in the beta-amyloid precursor protein (APP), from which Abeta arises by proteolysis, are associated with some forms of familial AD (FAD) and result in increased Abeta production. Two other FAD genes, presenilin-1 and -2, have also been shown to regulate Abeta production; however, studies examining the biological role of these FAD genes suggest an alternative theory for the pathogenesis of AD. In fact, all three genes have been shown to regulate programmed cell death, hinting at the possibility that dysregulation of apoptosis plays a primary role in causing neuronal loss in AD. In an attempt to reconcile these two hypotheses, we investigated APP processing during apoptosis and found that APP is processed by the cell death proteases caspase-6 and -8. APP is cleaved by caspases in the intracellular portion of the protein, in a site distinct from those processed by secretases. Moreover, it represents a general effect of apoptosis, because it occurs during cell death induced by several stimuli both in T cells and in neuronal cells.  (+info)

Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. (3/222)

Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  (+info)

Cleavage and inactivation of ATM during apoptosis. (4/222)

The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  (+info)

Proteolytic cleavage of beta-catenin by caspases: an in vitro analysis. (5/222)

Cleavage of structural proteins by caspases has been associated with the severe morphological changes occurring during the apoptotic process. One of the proteins regulating the connection of the actin filament with cadherins in a cell-cell adhesion complex is beta-catenin. During apoptosis, both an N-terminal and a small C-terminal part are removed from beta-catenin. Removal of the N-terminal part may result in a disconnection of the actin filament from a cadherin cell-cell adhesion complex. We demonstrate that caspase-8, -3 and -6 directly proteolyse beta-catenin in vitro. However, the beta-catenin cleavage products generated by caspase-8 were different from those generated by caspase-3 or caspase-6. Caspase-1, -2, -4/11 and -7 did not or only very inefficiently cleave beta-catenin. These data suggest that activation of procaspase-3, -6 or -8 by different stimuli in the cell might result in a differential proteolysis of beta-catenin.  (+info)

Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity. (6/222)

The caspase-mediated cleavage of a limited number of cellular proteins is a common feature of apoptotic cell death. This cleavage usually inhibits the function of the target protein or generates peptides that actively contribute to the death process. In the present study, we demonstrate that the cyclin-dependent kinase inhibitor p27Kip1 is cleaved by caspases in human leukemic cells exposed to apoptotic stimuli. We have shown recently that p27Kip1 overexpression delayed leukemic cell death in response to cytotoxic drugs. In transient transfection experiments, the p23 and the p15 N-terminal peptides generated by p27Kip1 proteolysis demonstrate an anti-apoptotic effect similar to that induced by the wild-type protein, whereas cleavage-resistant mutants have lost their protective effect. Moreover, stable transfection of a cleavage-resistant mutant of p27Kip1 sensitizes leukemic cells to drug-induced cell death. Altogether, these results indicate that proteolysis of p27Kip1 triggered by caspases mediates the anti-apoptotic activity of the protein.  (+info)

Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. (7/222)

Caspase-3 initiates apoptotic DNA fragmentation by proteolytically inactivating DFF45 (DNA fragmentation factor-45)/ICAD (inhibitor of caspase-activated DNase), which releases active DFF40/CAD (caspase-activated DNase), the inhibitor's associated endonuclease. Here, we examined whether other apoptotic proteinases initiated DNA fragmentation via DFF45/ICAD inactivation. In a cell-free assay, caspases-3, -6, -7, -8, and granzyme B initiated benzoyloxycarbonyl-Asp-Glu-Val-Asp (DEVD) cleaving caspase activity, DFF45/ICAD inactivation, and DNA fragmentation, but calpain and cathepsin D failed to initiate these events. Strikingly, only the DEVD cleaving caspases, caspase-3 and caspase-7, inactivated DFF45/ICAD and promoted DNA fragmentation in an in vitro DFF40/CAD assay, suggesting that granzyme B, caspase-6, and caspase-8 promote DFF45/ICAD inactivation and DNA fragmentation indirectly by activating caspase-3 and/or caspase-7. In vitro, however, caspase-3 inactivated DFF45/ICAD and promoted DNA fragmentation more effectively than caspase-7 and endogenous levels of caspase-7 failed to inactivate DFF45/ICAD in caspase-3 null MCF7 cells and extracts. Together, these data suggest that caspase-3 is the primary inactivator of DFF45/ICAD and therefore the primary activator of apoptotic DNA fragmentation.  (+info)

Caspase-3 and caspase-7 but not caspase-6 cleave Gas2 in vitro: implications for microfilament reorganization during apoptosis. (8/222)

Apoptosis is characterized by proteolysis of specific cellular proteins by a family of cystein proteases known as caspases. Gas2, a component of the microfilament system, is cleaved during apoptosis and the cleaved form specifically regulates microfilaments and cell shape changes. We now demonstrate that Gas2 is a substrate of caspase-3 but not of caspase-6. Proteolytic processing both in vitro and in vivo is dependent on aspartic residue 279. Gas2 cleavage was only partially impaired in apoptotic MCF-7 cells which lack caspase-3, thus indicating that different caspases can process Gas2 in vivo. In vitro Gas2 was processed, albeit with low affinity, by caspase-7 thus suggesting that this caspase could be responsible for the incomplete Gas2 processing observed in UV treated MCF-7 cells. In vivo proteolysis of Gas2 was detected at an early stage of the apoptotic process when the cells are still adherent on the substrate and it was coupled to the specific rearrangement of the microfilament characterizing cell death. Finally we also demonstrated that Gas2 in vitro binds to F-actin, but this interaction was unaffected by the caspase-3 dependent proteolytic processing.  (+info)