Endogenous casein kinase I catalyzes the phosphorylation of the lens fiber cell connexin49. (25/1209)

The lens fiber cell-specific gap junction protein connexin49 is a substrate for a membrane-associated Ser/Thr protein kinase that can be extracted from lens cell membranes by 0.6 M KCl. However, the identity of this protein kinase has not been defined. In this report, evidence is presented indicating that it is casein kinase I. Thus, connexin49 was shown to be a substrate for purified casein kinase I but not for casein kinase II; the endogenous connexin49 protein kinase activity extracted from lens membranes with KCl was inhibited by the casein kinase I-specific inhibitor, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide (CKI-7); the connexin49 protein kinase activity in the lens membrane KCl extract, which could be partially purified by gel filtration and affinity purification with a casein-Sepharose 4B column, copurified with casein kinase activity; phosphopeptide analysis showed that casein kinase I and the connexin49 protein kinase activity in the lens membrane KCl extract probably share the same phosphorylation sites in connexin49. Reverse transcription-PCR using total ovine lens RNA and casein kinase I isoform-specific oligonucleotide primers resulted in the amplification of cDNAs encoding casein kinase I-alpha and -gamma, while an in-gel casein kinase assay indicated casein kinase activity in the lens membrane KCl extract was associated with a major 39.2-kDa species, which is consistent with the 36 to 40-kDa size of casein kinase I-alpha in other animal species. These results demonstrate that the protein kinase activity present in the lens membrane 0.6 M KCl extract that catalyzes the phosphorylation of connexin49 is casein kinase I, probably the alpha isoform.  (+info)

Kinetic study of the inhibition of CK2 by heparin fragments of different length. (26/1209)

The structure-activity relationships for the inhibition of protein kinase CK2 by heparin were investigated using purified heparin fragments of different length, varying from 4 to 24 oligosaccharide sugar units. The inhibitory potency was shown to decrease concomitant with the shortening of the heparin fragment length. The fragment of 24 oligosaccharide sugar units was the most potent inhibitor with a K(i) value of 22 nM which is close to the K(i) value for the commercial heparin mixture available. Shortening of the heparin from 24 to 12 sugar units had a moderate influence on the inhibitory potency causing an increase in K(i) values up to 151 nM while fragments shorter than 12 sugar units showed a more drastic increase in K(i) values reaching up to micromolar range. The mode of inhibition was studied in respect to the protein substrate beta-casein and it was shown to be competitive for the long as well as for the short heparin fragments. In contrast, the inhibition mode in respect to a synthetic peptide substrate RRRADDSDDDDD was found to be hyperbolic partial non-competitive mixed-type. Such a kinetic model suggests that heparin binds to a site on CK2 which does not overlap with the peptide substrate binding site and that a productive enzyme complex exists where both heparin and peptide substrate are simultaneously bound. This is in contrast to the competitive inhibition model of the phosphorylation of protein substrate beta-casein where the binding of the protein substrate and inhibitor was mutually exclusive.  (+info)

Phosphorylation of yeast ribosomal proteins by CKI and CKII in the presence of heparin. (27/1209)

We have found that heparin has a different effect on Trichosporon cutaneum ribosomal protein phosphorylation by CKI and by CKII. In the presence of heparin, modification of 13 kDa, 19 kDa and 38 kDa proteins catalyzed by CKII was inhibited, while in the case of CKI, in addition to protein of 15 kDa, phosphorylation of 20 kDa and 35 kDa proteins was detected. It was also found that, in the presence of heparin, phosphorylation of P proteins (13 kDa and 38 kDa) by ribosome-bound protein kinases was inhibited. Moreover at the same conditions modification of 40 kDa protein was observed in all four yeast species tested.  (+info)

Localization of calponin binding sites in the structure of 90 kDa heat shock protein (Hsp90). (28/1209)

The structure of rabbit liver Hsp90 was reevaluated by limited trypsinolysis, N-terminal sequencing and determination of the site that is phosphorylated by casein kinase II. Limited proteolysis results in formation of four groups of large peptides with M(r) in the range of 26-41 kDa. Peptides with M(r) 39-41 kDa were represented by large N-terminal and central peptides starting at residue 283 of the alpha-isoform of Hsp90. All sites phosphorylated by casein kinase II were located in the large 39-41 kDa peptides. Peptides with M(r) 26-27 kDa were represented by short N-terminal and central peptides starting at Glu-400 of the alpha-isoform of Hsp90. The data of affinity chromatography and light scattering indicate that smooth muscle calponin interacts with Hsp90. The calponin binding sites are located in the large (37-41 kDa) N-terminal and in a short (26-27 kDa) central peptide starting at Glu-400 of the alpha-isoform of Hsp90. Phosphorylation by casein kinase II up to 2 mol of phosphate per mol of Hsp90 does not affect interaction of Hsp90 with calponin.  (+info)

Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. (29/1209)

The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser(232) in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser(232) was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser(215). In vitro, P protein could be phosphorylated by purified CK1 at Ser(215) but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser(215), Ser(232), and Ser(237) were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase.  (+info)

Xenopus laevis occludin. Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. (30/1209)

Occludin is a protein component of the membrane domain of tight junctions, and has been shown to be phosphorylated in vivo in cultured cells and Xenopus laevis embryos. However, nothing is known about the identity of specific occludin kinase(s) and occludin phosphorylation site(s). Furthermore, nothing is known about the interaction of occludin with cingulin, a cytoplasmic plaque component of tight junctions. Here we report the isolation and sequencing of a complete X. laevis occludin cDNA, and experiments aimed at mapping X. laevis occludin in vitro phosphorylation site(s) and characterizing occludin interaction with cingulin. The sequence of Xenopus occludin is homologous to that of occludins from other species, with identities ranging from 41% to 58%. Bacterially expressed domain E of Xenopus occludin (amino acids 247-493) was a good substrate for protein kinase CK2 (stoichiometry 10.8%, Km 8.4 microM) but not for CK1 kinase, protein kinase A, cdc2 kinase, MAP kinase or syk kinase. Residues Thr375 and Ser379 were identified as potential CK2 phosphorylation sites in this region based on sequence analysis. Mutation of Ser379 to aspartic acid or alanine reduced phosphorylation by CK2 by approximately 50%, and double mutation of Ser379 into aspartic acid and Thr375 into aspartic acid essentially abolished phosphorylation. Glutathione S-transferase (GST) pull-down experiments using extracts of Xenopus A6 epithelial cells showed that constructs of GST fused to wild-type and mutant forms of the C-terminal region of X. laevis occludin associate with several polypeptides, and immunoblot analysis showed that one of these polypeptides is cingulin. GST pull-down experiments using in vitro translated, full-length Xenopus cingulin indicated that cingulin interacts directly with the C-terminal region of occludin.  (+info)

LIS1 is a microtubule-associated phosphoprotein. (31/1209)

Lissencephaly, a severe brain malformation, may be caused by mutations in the LIS1 gene. LIS1 encodes a microtubule-associated protein (MAP) that is also part of the enzyme complex, platelet-activating factor acetylhydrolase. LIS1 is also found in a complex with two protein kinases; a T-cell Tat-associated kinase, which contains casein-dependent kinase (CDK) activating kinase (CAK), as well as CAK-inducing activity, and with a spleen protein-tyrosine kinase similar to the catalytic domain of p72syk. As phosphorylation is one of the ways to control cellular localization and protein-protein interactions, we investigated whether LIS1 undergoes this post-translational modification. Our results demonstrate that LIS1 is a developmentally regulated phosphoprotein. Phosphorylated LIS1 is mainly found in the MAP fraction. Phosphoamino acid analysis revealed that LIS1 is phosphorylated on serine residues. Alkaline phosphatase treatment reduced the number of visible LIS1 isoforms. In-gel assays demonstrate a 50-kDa LIS1 kinase that is enriched in microtubule-associated fractions. In vitro, LIS1 was phosphorylated by protein kinase CKII (casein kinase II), but not many other kinases that were tested. We suggest that LIS1 activity may be regulated by phosphorylation.  (+info)

The multifunctional herpes simplex virus IE63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. (32/1209)

Herpes simplex virus type 1 (HSV-1), the prototype alpha-herpesvirus, causes several prominent diseases. The HSV-1 immediate early (IE) protein IE63 (ICP27) is the only regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far. IE63 is a multifunctional protein affecting transcriptional and post-transcriptional processes, and it can shuttle from the nucleus to the cytoplasm. To identify interacting cellular proteins, a HeLa cDNA library was screened in the yeast two-hybrid system using IE63 as bait. Several interacting proteins were identified including heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional protein like IE63, and the beta subunit of casein kinase 2 (CK2), a protein kinase, and interacting regions were mapped. Confirmation of interactions was provided by fusion protein binding assays, co-immunoprecipitation from infected cells, and CK2 activity assays. hnRNP K co-immunoprecipitated from infected cells with anti-IE63 serum was a more rapidly migrating subfraction than hnRNP K immunoprecipitated by anti-hnRNP K serum. Using anti-IE63 serum, both IE63 and hnRNP K were phosphorylated in vitro by CK2, while in immunoprecipitates using anti-hnRNP K serum, IE63 but not hnRNP K was phosphorylated by CK2. These data provide important new insights into how this key viral regulatory protein exerts its functions.  (+info)