Modeling of a human circadian mutation yields insights into clock regulation by PER2. (49/189)

Circadian rhythms are endogenous oscillations of physiological and behavioral phenomena with period length of approximately 24 hr. A mutation in human Period 2 (hPER2), a gene crucial for resetting the central clock in response to light, is associated with familial advanced sleep phase syndrome (FASPS), an autosomal dominant condition with early morning awakening and early sleep times. The FASPS hPER2 S662G mutation resulted in PER2 being hypophosphorylated by casein kinase I (CKI) in vitro. We generated transgenic mice carrying the FASPS hPER2 S662G mutation and faithfully recapitulate the human phenotype. We show that phosphorylation at S662 leads to increased PER2 transcription and suggest that phosphorylation at another site leads to PER2 degradation. Altering CKIdelta dosage modulates the S662 phenotype demonstrating that CKIdelta can regulate period through PER2 in vivo. Modeling a naturally occurring human variant in mice has yielded novel insights into PER2 regulation.  (+info)

Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. (50/189)

Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) delta and CK1epsilon are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1epsilon binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1epsilon, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1epsilon kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of beta-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1delta/epsilon-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.  (+info)

Yeast casein kinase I homologues: an essential gene pair. (51/189)

We report the isolation of an essential pair of Saccharomyces cerevisiae genes that encode protein kinase homologues. The two genes were independently isolated as dosage-dependent suppressors. Increased dosage of YCK1 suppressed defects caused by reduced SNF1 protein kinase activity, and increased dosage of YCK2 relieved sensitivity of wild-type cells to salt stress. The two genes function identically in the two growth assays, and loss of function of either gene alone has no discernible effect on growth. However, loss of function of both genes results in inviability. The two predicted protein products share 77% overall amino acid identity and contain sequence elements conserved among protein kinases. Partial sequence obtained for rabbit casein kinase I shares 64% identity with the two yeast gene products. Moreover, an increase in casein kinase I activity is observed in extracts from cells overexpressing YCK2. Thus YCK1 and YCK2 appear to encode casein kinase I homologues.  (+info)

Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. (52/189)

The Wnt/beta-catenin signaling pathway is critical in both cellular proliferation and organismal development. However, how the beta-catenin degradation complex is inhibited upon Wnt activation remains unclear. Using a directed RNAi screen we find that protein phosphatase 1 (PP1), a ubiquitous serine/threonine phosphatase, is a novel potent positive physiologic regulator of the Wnt/beta-catenin signaling pathway. PP1 expression synergistically activates, and inhibition of PP1 inhibits, Wnt/beta-catenin signaling in Drosophila and mammalian cells as well as in Xenopus embryos. The data suggest that PP1 controls Wnt signaling through interaction with, and regulated dephosphorylation of, axin. Inhibition of PP1 leads to enhanced phosphorylation of specific sites on axin by casein kinase I. Axin phosphorylation markedly enhances the binding of glycogen synthase kinase 3, leading to a more active beta-catenin destruction complex. Wnt-regulated changes in axin phosphorylation, mediated by PP1, may therefore determine beta-catenin transcriptional activity. Specific inhibition of PP1 in this pathway may offer therapeutic approaches to disorders with increased beta-catenin signaling.  (+info)

Casein kinase 1 is a novel negative regulator of E-cadherin-based cell-cell contacts. (53/189)

Cadherins are the most crucial membrane proteins for the formation of tight and compact cell-cell contacts. Cadherin-based cell-cell adhesions are dynamically established and/or disrupted during various physiological and pathological processes. However, the molecular mechanisms that regulate cell-cell contacts are not fully understood. In this paper, we report a novel functional role of casein kinase 1 (CK1) in the regulation of cell-cell contacts. Firstly, we observed that IC261, a specific inhibitor of CK1, stabilizes cadherin-based cell-cell contacts, whereas the overexpression of CK1 disrupts them. CK1 colocalizes with E-cadherin and phosphorylates the cytoplasmic domain of E-cadherin in vitro and in a cell culture system. We show that the major CK1 phosphorylation site of E-cadherin is serine 846, a highly conserved residue between classical cadherins. Constitutively phosphorylated E-cadherin (S846D) is unable to localize at cell-cell contacts and has decreased adhesive activity. Furthermore, phosphorylated E-cadherin (S846D) has weaker interactions with beta-catenin and is internalized more efficiently than wild-type E-cadherin. These data indicate that CK1 is a novel negative regulator of cadherin-based cell-cell contacts.  (+info)

Regulation of Alzheimer's disease amyloid-beta formation by casein kinase I. (54/189)

Alzheimer's disease (AD) is associated with accumulation of the neurotoxic peptide amyloid-beta (Abeta), which is produced by sequential cleavage of amyloid precursor protein (APP) by the aspartyl protease beta-secretase and the presenilin-dependent protease gamma-secretase. An increase of casein kinase 1 (CK1) expression has been described in the human AD brain. We show, by using in silico analysis, that APP, beta-secretase, and gamma-secretase subunits contain, in their intracellular regions, multiple CK1 consensus phosphorylation sites, many of which are conserved among human, rat, and mouse species. Overexpression of constitutively active CK1epsilon, one of the CK1 isoforms expressed in brain, leads to an increase in Abeta peptide production. Conversely, three structurally dissimilar CK1-specific inhibitors significantly reduced endogenous Abeta peptide production. By using mammalian cells expressing the beta C-terminal fragment of APP, it was possible to demonstrate that CK1 inhibitors act at the level of gamma-secretase cleavage. Importantly, Notch cleavage was not affected. Our results indicate that CK1 represents a therapeutic target for prevention of Abeta formation in AD.  (+info)

Biochemical characterization of a N-terminal fragment (p5) cleaved from fibroblast growth factor-binding protein (FGF-BP) in bovine milk in vitro. (55/189)

By means of successive gel filtration on a Superdex 30 pg column and Mono S column chromatography, a 5-kDa polypeptide (p5) was highly purified from the low molecular weight (LMW) fraction separated from the partially purified lactoferrin (bLF) fraction of bovine milk, and biochemically characterized as a phosphate acceptor for two protein kinases [cAMP-dependent protein kinase (PKA) and casein kinase 1delta (CK1delta)] in vitro. Purified p5 was identified as a fragment (N-terminal positions 24-51, 28 amino acid residues) cleaved from fibroblast growth factor-binding protein (FGF-BP, p37). Both purified p5 and synthetic p5 (sp5) were effectively phosphorylated by PKA, and also phosphorylated by CK1delta in the presence of two sulfated lipids [sulfatide or cholesterol-3-sulfate (CH-3S), SCS] in vitro. A novel phosphorylation site (RNRRGS) for CK1delta and a potent SCS-binding site (RNRR) on p5 were identified. The PKA-mediated phosphorylation of p5 was highly stimulated when incubated with either acidic FGF (aFGF) or bLF in vitro, but this phosphorylation was more sensitive to SCS than H-89 (a specific PKA inhibitor). Immunoprecipitate experiments revealed p5, but not the phosphorylated p5, to be directly bound to aFGF in vitro. These results show that (i) p5 has a high binding affinity with aFGF as well as bLF; (ii) the binding of SCS to p5 results in the selective inhibition of its phosphorylation by PKA; and (iii) SCS functions as an effective stimulator for the phosphorylation of p5 by CK1delta in vitro. In addition, p5 may play an important physiological role as a trafficking factor for the physiological interaction between aFGF group including endothelial cell growth factors and their binding proteins in vivo.  (+info)

Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. (56/189)

The yeast glucose sensors Rgt2 and Snf3 generate a signal in response to glucose that leads to degradation of Mth1 and Std1, thereby relieving repression of Rgt1-repressed genes such as the glucose transporter genes (HXT). Mth1 and Std1 are degraded via the Yck1/2 kinase-SCF(Grr1)-26S proteasome pathway triggered by the glucose sensors. Here, we show that RGT2-1 promotes ubiquitination and subsequent degradation of Mth1 and Std1 regardless of the presence of glucose. Site-specific mutagenesis reveals that the conserved lysine residues of Mth1 and Std1 might serve as attachment sites for ubiquitin, and that the potential casein kinase (Yck1/2) sites of serine phosphorylation might control their ubiquitination. Finally, we show that active Snf1 protein kinase in high glucose prevents degradation of Mth1 and Std1.  (+info)