Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. (17/784)

Adenovirus-mediated gene delivery in animal models of vascular injury has provided insights into the mechanisms underlying vessel wall pathologies. We have previously demonstrated that overexpression of the Gax transcription factor inhibits neointimal formation in rat and rabbit models of arterial injury. Here, we evaluate potential mechanisms for the reduction in stenotic lesion size due to Gax overexpression. At 3, 7 and 14 days after injury the Ad-Gax-infected arteries displayed a marked decrease in medial vascular smooth muscle cell number (3 days, 54% reduction P < 0.01; 7 days, 41% reduction P < 0.003; 14 days, 49% reduction P < 0.02). At 3 days after injury, PCNA expression was attenuated in the Ad-Gax-treated vessels compared with control vessels (65% reduction P < 0.02), indicating a reduction in cellular proliferation. At 7 days and 14 days after injury Ad-Gax-infected arteries exhibited elevated number of TUNEL-positive medial VSMCs compared with control-treated arteries (7 days, 9.2-fold increase P < 0.03; 14 days, 17.2-fold increase P < 0.03), indicating an induction of apoptotic cell death. These data suggest that deregulated Gax expression induces first cell cycle arrest and then apoptosis in the vascular smooth muscle cells that contribute to the neointimal layer. Therefore, the efficacy of this therapeutic strategy appears to result from the ability of the Gax transcriptional regulator to modulate multiple cellular responses.  (+info)

Structural requirements for TFPI-mediated inhibition of neointimal thickening after balloon injury in the rat. (18/784)

The intimal thickening that follows vascular injury is inhibited by periprocedural tissue factor pathway inhibitor (TFPI) treatment in animal models. TFPI is a multivalent Kunitz-type protease inhibitor that inhibits factor Xa via its second Kunitz domain and the factor VIIa/tissue factor (TF) complex via its first Kunitz domain. The basic C-terminus of TFPI is required for the binding of TFPI to cell surfaces and cell-bound TFPI mediates the internalization and degradation of factor X and the down regulation of surface factor VIIa/TF activity. The C-terminus of TFPI is also required for its reported direct inhibition of smooth muscle cell proliferation in vitro. To examine the structural requirements for the inhibition of neointimal formation by TFPI, several TFPI-related proteins were tested in the rat carotid angioplasty model: 1) XK(1), a hybrid protein containing the N-terminal portion of factor X and the first Kunitz domain of TFPI that directly inhibits factor VIIa/TF; 2) TFPI(WT), the full-length TFPI molecule that inhibits factor Xa and factor VIIa/TF and binds cell surfaces; 3) TFPI(K36I), an altered form of TFPI that inhibits factor Xa, but not factor VIIa/TF, and binds cell surfaces; 4) TFPI(13-161), a truncated form of TFPI that inhibits factor VIIa/TF but interacts with factor Xa poorly and does not bind to cell surfaces. Seven day infusions of XK(1), TFPI(WT), and high levels of TFPI(K36I) begun the day before balloon-induced vascular injury produced a significant reduction in the intimal hyperplasia measured 28 days after angioplasty. The infusion of high concentrations of TFPI(13-161) was ineffective in this model. These in vivo results directly mirror the ability of each TFPI-related protein to inhibit tissue thromboplastin-induced coagulation in rat plasma: XK(1) approximately TFPI(WT)>TFPI(K36I)>>TFPI(13-161). The studies confirm the important role of TF-mediated coagulation in the smooth muscle proliferation and neointimal thickening that follows vascular injury and suggest that the anticoagulant effect alone of TFPI and TFPI-related proteins is sufficient to explain their therapeutic action.  (+info)

A systematic analysis of 40 random genes in cultured vascular smooth muscle subtypes reveals a heterogeneity of gene expression and identifies the tight junction gene zonula occludens 2 as a marker of epithelioid "pup" smooth muscle cells and a participant in carotid neointimal formation. (19/784)

An accumulation of evidence suggests that vascular smooth muscle is composed of cell subpopulations with distinct patterns of gene expression. Much of this evidence has come from serendipitous discoveries of genes marking phenotypically distinct aortic cultures derived from 12-day-old and 3-month-old rats. To identify more systematic differences, we isolated 40 genes at random from libraries of these 2 cultures and examined message expression patterns. To determine consistency of differential expression, we measured mRNA levels in 4 sets of cultures in 6 phenotypically distinct aortic cell clones and in balloon injured rat carotid arteries to determine the relevance of these differences in vitro to in vivo biology. The following 5 consistently differentially expressed genes were identified in vitro: zonula occludens 2 (ZO-2); peroxisome proliferator-activated receptor delta (PPARdelta); secreted protein, acidic and rich in cysteine (SPARC); alpha1(I)collagen; and A2, an uncharacterized gene. We examined these 5 clones during carotid artery injury and an inconsistently differentially expressed clone Krox-24 because, as an early response transcription factor, it could be involved in the injury response. PPARdelta, A2, and Krox-24 mRNAs were upregulated during the day after injury. ZO-2 and alpha1(I)collagen messages were modulated for up to a month, whereas SPARC message showed no consistent change. An analysis of ZO-2 and other tight junction genes indicates that tight junctions may play a role in smooth muscle biology. These data suggest that a systematic analysis of these libraries is likely to identify a very large number of differentially expressed genes. ZO-2 is particularly intriguing both because of this tight junction gene's pattern of prolonged over-expression after injury and because of its potential role in determining the distinctive epithelioid phenotype of smooth muscle cells identified in rat and other species.  (+info)

Selection of cell specific peptides in a rat carotid injury model using a random peptide-presenting bacterial library. (20/784)

Cell specific peptides are possible candidates to enable targeted delivery of drugs and therapeutic genes in vivo. This study explores the utility of using a peptide-presenting bacterial library (pFliTrx) for the selection of new cell specific peptides, which bind to vascular cells of perfused tissues or organs. The balloon-injured rat carotid artery served as a model. Following perfusion of injured vascular segments with pFliTrx, 36 single clones could be identified. In radioligand binding studies, one of them, peptide P36, binds predominantly to perfused injured versus control vessel segments. It was additionally found that P36 binds with a 700-fold higher affinity in vitro to endothelial cells stimulated by treatment with LPS and TNF-alpha compared with unstimulated endothelial cells. The amino acid sequence of P36 reveals high homology to alpha(4)beta(1)-integrin, which mediates leukocyte migration from the vasculature at sites of inflammation via binding to cellular adhesion molecules, such as VCAM. In summary, this study demonstrates, that high specific peptides directed against injured vascular cells can be selected using a random peptide-presenting bacterial library.  (+info)

Adenoviral RB2/p130 gene transfer inhibits smooth muscle cell proliferation and prevents restenosis after angioplasty. (21/784)

Smooth muscle cell (SMC) proliferation that results in neointima formation is implicated in the pathogenesis of atherosclerotic plaques and accounts for the high rates of restenosis that occur after percutaneous transluminal coronary angioplasty, a widespread treatment for coronary artery disease. Endothelial lesions trigger intense proliferative signals to the SMCs of the subintima, stimulating their reentry into the cell cycle from a resting G(0) state, resulting in neointima formation and vascular occlusion. Cellular proliferation is negatively controlled by growth-regulatory or tumor-suppressor genes, or both, such as the retinoblastoma gene family members (RB/p105, p107, RB2/p130). In the present study, we show that RB2/p130 inhibited SMC proliferation in vitro and in vivo. We used the rat carotid artery model of restenosis to demonstrate that adenovirus-mediated localized arterial transduction of RB2/p130 at the time of angioplasty significantly reduced neointimal hyperplasia and prevented restenosis. Furthermore, the ability of pRb2/p130 to block proliferation correlated with its ability to bind and sequester the E2F family of transcription factors, which are important mediators of cell cycle progression. These results imply that RB2/p130 could be an important target for vascular gene therapy.  (+info)

ATZ1993, an orally active and novel nonpeptide antagonist for endothelin receptors and inhibition of intimal hyperplasia after balloon denudation of the rabbit carotid artery. (22/784)

The present experiments were designed to investigate the effect of ATZ1993 [3-carboxy-4,5-dihydro-1-[1-(3-ethoxyphenyl)propyl]-7-(5-pyrimidinyl)met hoxy-[1H]-benz[g]indazole] on the intimal hyperplasia after balloon endothelial denudation of the rabbit carotid artery. ATZ1993 inhibited the specific [125I]endothelin (ET)-1 binding not only to ET-receptor subtype A (ET(A)) with a pKi value of 8.69+/-0.02, but also to ET-receptor subtype B (ET(B)) with a pKi value of 7.20+/-0.03. Counterscreening in the binding assay (30 different receptors) confirmed that ATZ1993 had a high selectivity for ET receptors. Increases in intima:media ratio and DNA content in the vessel wall were significantly (P < 0.005) inhibited by ATZ1993 in a daily dose of 30 mg x 200 ml(-1) x kg(-1) for 1 week before and 6 weeks after balloon denudation. Inhibition of the intimal hyperplasia with ATZ1993 was determined as approximately 77% for increases in intima:media ratio and DNA content. Plasma concentrations of ATZ1993 ranged between 121.6+/-26.6 and 131.7+/-20.9 nM throughout experimental periods. Mean arterial blood pressure, heart rate and body weight gain remained unaffected by administering ATZ1993. These results demonstrate that ATZ1993 is a novel nonpeptide and nonselective ET(A)/ET(B)-receptor antagonist, and the agent when administered orally inhibits effectively intimal hyperplasia after balloon denudation of the rabbit carotid artery.  (+info)

Altered vascular injury responses in mice deficient in protease-activated receptor-1. (23/784)

Expression of protease-activated receptor-1 (PAR-1), a cell-surface receptor for thrombin, is increased in balloon-injured rat carotid artery and human atherosclerotic tissue. To examine the role of PAR-1 in vascular injury, we compared vascular injury responses in wild-type (WT) and PAR-1-deficient (PAR-1(-/-)) mice. Arterial injury was induced by inserting a flexible guidewire into the common carotid artery and withdrawing it 6 times with rotation. Bromodeoxyuridine, delivered subcutaneously by osmotic minipump, was used to measure cellular proliferation. Mice were perfusion-fixed at 1, 2, 5, 10, and 14 days after injury. Extensive endothelial damage, mural thrombosis, platelet adherence, and medial smooth muscle cell loss and necrosis were apparent at day 1 in both WT and PAR-1(-/-) mice. The incidence of thrombosis or platelet deposition in WT and PAR-1(-/-) mice declined from 100% at day 1 to 25% and 21%, respectively, at 14 days. Endothelial disruption, as assessed by Evan's blue uptake, was maximum at day 1 and declined by day 14. This apparent endothelial regrowth was similar in WT and PAR-1(-/-) mice. Significant medial thickening at 14 days after injury was similar in WT (from 22.8+/-1.7 to 30.7+/-1.9 microm) and PAR-1(-/-) (from 23.2+/-2.1 to 30.5+/-2.2 microm) mice. Medial area also increased in response to injury but to a lesser extent in PAR-1(-/-) mice (from 0.0250+/-0.0044 to 0.0312+/-0.0047 mm(2)) than in WT mice (from 0.0266+/-0.0040 to 0.0398+/-0.0050 mm(2)). Neointima was variable and occurred in 6 of 13 WT and 5 of 12 PAR-1(-/-) mice. However, intimal area tended to be less in PAR-1(-/-) mice (0. 0016+/-0.0007 mm(2)) compared with WT mice (0.0082+/-0.0032 mm(2)), although this difference did not achieve statistical significance (P=0.06). Cell density was significantly greater in normal carotids from PAR-1(-/-) (6.4+/-0.5 x 10(3)/mm(2)) compared with WT (4.3+/-0. 8 x 10(3)/mm(2)) mice and remained elevated after injury. Vessel and lumen diameters tended to increase in WT mice after injury, whereas vessel diameter was unchanged and lumen diameter actually decreased in PAR-1(-/-) mice. Cell proliferation in injured carotid arteries was similar in PAR-1(-/-) and WT mice. These data suggest that PAR-1(-/-) may play a role in vascular injury responses in this mouse model via possible effects on extracellular matrix regulation.  (+info)

Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. (24/784)

Tissue type plasminogen activator (tPA) can be effective therapy for embolic stroke by restoring cerebral perfusion. However, a recent experimental study showed that tPA increased infarct size in a mouse model of transient focal ischemia, suggesting a possible adverse effect of tPA on ischemic tissue per se. In this report, the effects of tPA in two rat models of cerebral ischemia were compared. In experiment 1, rats were subjected to focal ischemia via injection of autologous clots into the middle cerebral artery territory. Two hours after clot injection, rats were treated with 10 mg/kg tPA or normal saline. Perfusion-sensitive computed tomography scanning showed that tPA restored cerebral perfusion in this thromboembolic model. Treatment with tPA significantly reduced ischemic lesion volumes measured at 24 hours by >60%. In experiment 2, three groups of rats were subjected to focal ischemia via a mechanical approach in which a silicon-coated filament was used intraluminally to occlude the origin of the middle cerebral artery. In two groups, the filament was withdrawn after 2 hours to allow for reperfusion, and then rats were randomly treated with 10 mg/kg tPA or normal saline. In the third group, rats were not treated and the filament was not withdrawn so that permanent focal ischemia was present. In this experiment, tPA did not significantly alter lesion volumes after 2 hours of transient focal ischemia. In contrast, permanent ischemia significantly increased lesion volumes by 55% compared with transient ischemia. These results indicate that in these rat models of focal cerebral ischemia, tPA did not have detectable negative effects. Other potentially negative effects of tPA may be dependent on choice of animal species and model systems.  (+info)