Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: enzymology and characterization of intermediates by HPLC. (1/91)

The activities of beta-oxidation enzymes were measured in extracts of glucose- and triolein-grown cells of Aspergillus niger. Growth on triolein stimulated increased enzyme activity, especially for acyl-CoA dehydrogenase. No acyl-CoA oxidase activity was detected. HPLC analysis after incubation of triolein-grown cell extracts with decanoyl-CoA showed that beta-oxidation was limited to one cycle. Octanoyl-CoA accumulated as the decanoyl-CoA was oxidized. Beta-oxidation enzymes in isolated mitochondrial fractions were also studied. The results are discussed in the context of methyl ketone production by fungi.  (+info)

Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. (2/91)

In Saccharomyces cerevisiae, beta-oxidation of fatty acids is confined to peroxisomes. The acetyl-CoA produced has to be transported from the peroxisomes via the cytoplasm to the mitochondrial matrix in order to be degraded to CO(2) and H(2)O. Two pathways for the transport of acetyl-CoA to the mitochondria have been proposed. The first involves peroxisomal conversion of acetyl-CoA into glyoxylate cycle intermediates followed by transport of these intermediates to the mitochondria. The second pathway involves peroxisomal conversion of acetyl-CoA into acetylcarnitine, which is subsequently transported to the mitochondria. Using a selective screen, we have isolated several mutants that are specifically affected in the second pathway, the carnitine-dependent acetyl-CoA transport from the peroxisomes to the mitochondria, and assigned these CDAT mutants to three different complementation groups. The corresponding genes were identified using functional complementation of the mutants with a genomic DNA library. In addition to the previously reported carnitine acetyl-CoA transferase (CAT2), we identified the genes for the yeast orthologue of the human mitochondrial carnitine acylcarnitine translocase (YOR100C or CAC) and for a transport protein (AGP2) required for carnitine transport across the plasma membrane.  (+info)

Pea chloroplast carnitine acetyltransferase. (3/91)

The purpose of this study was to resolve the controversy as to whether or not chloroplasts possess the enzyme carnitine acetyltransferase (CAT) and whether the activity of this enzyme is sufficient to support previously reported rates of fatty acid synthesis from acetylcarnitine. CAT catalyses the freely reversible reaction: carnitine + short-chain acylCoA <--> short-chain acylcarnitine + CoASH. CAT activity was detected in thc chloroplasts of Pisum sativum L. With membrane-impermeable acetyl CoA as a substrate. activity was only detected in ruptured chloroplasts and not with intact chloroplasts, indicating that the enzyme was located on the stromal side of the envelope. In crude preparations, CAT could only be detected using a sensitive radioenzymatic assay due to competing reactions from other enzymes using acetyl CoA and large amounts of ultraviolet-absorbing materials. After partial purification of the enzyme, CAT was detected in both the forward and reverse directions using spectrophotometric assays. Rates of 100 nmol of product formed per minute per milligram of protein were obtained, which is sufficient to support reported fatty acid synthesis rates from acetylcarnitine. Chloroplastic CAT showed optimal activity at pH 8.5 and had a high substrate specificity, handling C2-C4 acyl CoAs only. We believe that CAT has been satisfactorily demonstrated in pea chloroplasts.  (+info)

Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. (4/91)

Mortierella alpina, a fungus used commercially as a source of arachidonic acid, 20:4(n-6), has been examined to see if growth on lipid-based carbon sources leads to repression of either fatty acid biosynthesis and/or fatty acid desaturation and elongation. Changes in the activities of ATP:citrate lyase, isocitrate lyase, carnitine acetyltransferase, malic enzyme, glucose-6-phosphate dehydrogenase and pyruvate kinase when the fungus was grown on fatty-acid-based (Tween) carbon sources were consistent with (i) the cells using the fatty acyl portion of the substrate as the sole carbon source, (ii) pyruvate kinase being the source of pyruvate for biosynthesis under these conditions and (iii) malic enzyme's major function being as a provider of NADPH for lipid biosynthesis. The abolition of fatty acid synthase activity when cells were grown on Tweens indicated the cessation of de novo fatty acid biosynthesis under these conditions. The fatty acyl composition of the lipid accumulated by the fungus grown on Tweens 20, 40 and 80 showed that desaturation and elongation of the substrate lipid still occurred. The absolute amount of arachidonic acid synthesized by Tween-grown cells was the same as for cells grown on glucose. The transformation of incorporated fatty acids into 20:4(n-6) was, it appeared, limited at the elongation of 18:3(n-6) to 20:3(n-6) as, in every case, 18:1, 18:2 and 18:3(n-6) increased in amount in the Tween-grown cells. These data show for the first time that fatty acid synthesis is regulated separately from fatty acid desaturation/elongation and that the latter reactions are not repressed by growth of the fungus on simple fatty acids. Furthermore, the data strongly implicate the elongation of 18:3(n-6) to 20:3(n-6) as the limiting step in arachidonic acid biosynthesis by Mort. alpina.  (+info)

Hormonal control of ketogenesis. Rapid activation of hepatic ketogenic capacity in fed rats by anti-insulin serum and glucagon. (5/91)

The enhanced capacity for long-chain fatty acid oxidation and ketogenesis that develops in the rat liver between 6 and 9 h after the onset of starvation was shown to be inducible much more rapidly by administration of anti-insulin serum or glucagon to fed rats. After only 1 h of treatment with either agent, the liver had clearly switched from a "nonketogenic" to a "ketogenic" profile, as determined by rates of acetoacetate and b-hydroxybutyrate production on perfusion with oleic acid. As was the case after starvation, the administration of insulin antibodies or glucagon resulted in depletion of hepatic glycogen stores and a proportional increase in the ability of the liver to oxidize long-chain fatty acids and (-)-octanoylcarnitine, suggesting that all three treatment schedules activated the carnitine acyltransferase system of enzymes. In contrast to anti-insulin serum, which produced marked elevations in plasma glucose, free fatty acid, and ketone body concentrations, glucagon treatment had little effect on any of these parameters, presumably due to enhanced insulin secretion after the initial stimulation of glycogenolysis. Thus, after treatment with glucagon alone, it was possible to obtain a "ketogenic" liver from a nonketotic animal. The results are consistent with the possibility that the activity of carnitine acyltransferase, and thus ketogenic capacity, is subject to bihormonal control through the relative blood concentrations of insulin and glucagon, as also appears to be the case with hepatic carbohydrate metabolism.  (+info)

Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. (6/91)

We test whether the dysfunction with age of carnitine acetyltransferase (CAT), a key mitochondrial enzyme for fuel utilization, is due to decreased binding affinity for substrate and whether this substrate, fed to old rats, restores CAT activity. The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-alpha-lipoic acid (LA). Old rats, compared with young rats, showed a decrease in CAT activity and in CAT-binding affinity for both substrates, ALCAR and CoA. Feeding ALCAR or ALCAR plus LA to old rats significantly restored CAT-binding affinity for ALCAR and CoA, and CAT activity. To explore the underlying mechanism, lipid peroxidation and total iron and copper levels were assayed; all increased in old rats. Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels. Ex vivo oxidation of young-rat brain with Fe(II) caused loss of CAT activity and binding affinity. In vitro oxidation of purified CAT with Fe(II) inactivated the enzyme but did not alter binding affinity. However, in vitro treatment of CAT with the lipid peroxidation products malondialdehyde or 4-hydroxy-nonenal caused a decrease in CAT-binding affinity and activity, thus mimicking age-related change. Preincubation of CAT with ALCAR or CoA prevented malondialdehyde-induced dysfunction. Thus, feeding old rats high levels of key mitochondrial metabolites can ameliorate oxidative damage, enzyme activity, substrate-binding affinity, and mitochondrial dysfunction.  (+info)

Acetyl-coenzyme A hydrolase, an artifact? The conversion of acetyl-coenzyme A into acetate by the combined action of carnitine acetyltransferase and acetylcarnitine hydrolase. (7/91)

1. The nature of the acetyl-CoA hydrolase (EC 3.1.2.1) reaction in rat and sheep liver homogenates was investigated. 2. The activity determined in an incubated system was 5.10 and 3.28nmol/min per mg of protein for rat and sheep liver homogenate respectively. This activity was not affected by the addition of l-carnitine, but was decreased by the addition of d-carnitine. 3. No acetyl-CoA hydrolase activity could be detected in rat or sheep liver homogenates first treated with Sephadex G-25. This treatment decreased the carnitine concentrations of the homogenates to about one-twentieth. Subsequent addition of l-carnitine, but not d-carnitine, restored the apparent acetyl-CoA hydrolase activity. 4. Sephadex treatment did not affect acetyl-carnitine hydrolase activity of the homogenates, which was 5.8 and 8.1nmol/min per mg of protein respectively for rat and sheep liver. 5. Direct spectrophotometric assay of acetyl-CoA hydrolase, based on the reaction of CoA released with 5,5'-dithiobis-(2-nitrobenzoic acid), clearly demonstrated that after Sephadex treatment no activity could be measured. 6. Carnitine acetyltransferase (EC 2.3.1.7) activity measured in the same assay system in response to added l-carnitine was very low in normal rat liver homogenates, owing to the apparent high acetyl-CoA hydrolase activity, but was increased markedly after Sephadex treatment. The V(max.) for this enzyme in rat liver homogenates was increased from 3.4 to 14.8nmol/min per mg of protein whereas the K(m) for l-carnitine was decreased from 936 to 32mum after Sephadex treatment. 7. Acetyl-CoA hydrolase activity could be demonstrated in disrupted rat liver mitochondria but not in separated outer or inner mitochondrial membrane fractions. Activity could be demonstrated after recombination of outer and inner mitochondrial membrane fractions. The outer mitochondrial membrane fraction showed acetylcarnitine hydrolase activity and the inner mitochondrial membrane fraction showed carnitine acetyltransferase activity. 8. The results presented here demonstrate that acetyl-CoA hydrolase activity in rat and sheep liver is an artifact and the activity is due to the combined activity of carnitine acetyltransferase and acetylcarnitine hydrolase.  (+info)

Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. (8/91)

Carnitine acyltransferases have crucial roles in the transport of fatty acids for beta-oxidation. Dysregulation of these enzymes can lead to serious diseases in humans, and they are targets for therapeutic development against diabetes. We report the crystal structures of murine carnitine acetyltransferase (CRAT), alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains. Carnitine and CoA are bound in deep channels in the enzyme, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. Specifically, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.  (+info)