Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. (49/96)

Hypoxia in isolated myocytes results in accumulation of long-chain acylcarnitines (LCA) in sarcolemma. Inhibition of carnitine acyltransferase I (CAT-I) with sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (POCA) prevents both the accumulation of LCA in the sarcolemma and the initial electrophysiologic derangements associated with hypoxia. Another amphiphilic metabolite, lysophosphatidylcholine (LPC), accumulates in the ischemic heart in vivo, in part because of inhibition of its catabolism by accumulating LCA. It induces electrophysiologic alterations in vitro analogous to early changes induced by ischemia in vivo. The present study was performed to determine whether POCA could prevent accumulation of both LCA and LPC induced by ischemia in vivo and if so, whether attenuation of early arrhythmogenesis would result. LAD coronary artery occlusions were induced for 5 min in chloralose-anesthetized cats. Coronary occlusion in untreated control animals elicited prompt, threefold increases of LCA (73 +/- 8 to 286 +/- 60 pmol/mg protein) and twofold increase of LPC (3.3 +/- 0.4 to 7.5 +/- 0.9 nmol/mg protein) selectively in the ischemic zone, associated with ventricular tachycardia (VT) or ventricular fibrillation (VF) occurring within the 5-min interval before acquisition of myocardial samples in 64% of the animals. POCA prevented the increase of both LCA and LPC. It also prevented the early occurrence of VT or VF (within 5 min of occlusion) in all animals studied. The antiarrhythmic effect of POCA was not attributable to favorable hemodynamic changes or to changes in myocardial perfusion measured with radiolabeled microspheres. Thus, inhibition of CAT-I effectively reduced the incidence of lethal arrhythmias induced early after the onset of ischemia. Accordingly, pharmacologic inhibition of this enzyme provides a promising approach for prophylaxis of sudden cardiac death, that typically occurs very soon after the onset of acute ischemia, in man.  (+info)

A carnitine/acylcarnitine translocase assay applicable to biopsied muscle specimens without requiring mitochondrial isolation. (50/96)

A simple method for assaying the mitochondrial carnitine/acylcarnitine translocase of muscles that needs only few milligrams of fresh tissue is described. The procedure involves monitoring of the sulphobetaine (an inhibitor of the translocase)-sensitive acetylation of sub-saturating concentrations of carnitine in the medium, linked to the oxidation of [2-14C]pyruvate in the presence of malonate. Conditions affecting the reliability of the outlined procedure and the ancillary information to be collected, namely the activities of pyruvate oxidase system and carnitine acetyltransferase, for detecting possible deficiency of the translocase are described, together with data on the translocase activity in human skeletal muscle, in rat red and white skeletal muscles and in rat heart. The concepts outlined should allow development of assays of other mitochondrial transporters that also would require neither isolation of mitochondria nor availability of a large quantity of tissue, both of which are otherwise needed at present.  (+info)

Enzymes of carnitine acylation. Is overt carnitine palmitoyltransferase of liver peroxisomal carnitine octanoyltransferase? (51/96)

Liver mitochondria prepared by differential centrifugation are contaminated by significant quantities of peroxisomes and microsomal fractions. 'Easily solubilized carnitine palmitoyltransferase' prepared from liver mitochondria is thought to originate from the outer surface of the mitochondrial inner membrane. We have characterized the carnitine palmitoyltransferase activities of freeze-thaw extracts of rat liver mitochondrial preparations. Chromatography on Sephadex G-100 yields two broad peaks of carnitine decanoyltransferase activity: one eluted at the end of the void volume, which can be removed (precipitated) by ultracentrifugation; the second peak represents the soluble activity and is eluted at an Mr near 70,000. The activity in the soluble peak is precipitated by an antibody raised against carnitine octanoyltransferase purified from mouse liver peroxisomes. In contrast, antibody raised against carnitine palmitoyltransferase purified from liver mitochondrial membranes had no effect (P. Brady & L. Brady, personal communication). The carnitine acyltransferase activities of the Mr-70,000 peak in the presence or absence of Tween 20 showed maximum activity with decanoyl-CoA and about one-third of this activity with palmitoyl-CoA, similar to peroxisomal carnitine octanoyltransferase. These data show that 7500 g preparations of liver mitochondria isolated by differential centrifugation are enriched by peroxisomal carnitine octanoyltransferase (approx. 20% of the protein of the fraction is peroxisomal) and indicate that this enzyme may be the one reported as 'overt' or 'easily solubilized' mitochondrial carnitine palmitoyltransferase.  (+info)

Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids. (52/96)

The enzyme targets for chlorpromazine inhibition of rat liver peroxisomal and mitochondrial oxidations of fatty acids were studied. Effects of chlorpromazine on total fatty acyl-CoA synthetase activity, on both the first and the third steps of peroxisomal beta-oxidation, on the entry of fatty acyl-CoA esters into the peroxisome and on catalase activity, which allows breakdown of the H2O2 generated during the acyl-CoA oxidase step, were analysed. On all these metabolic processes, chlorpromazine was found to have no inhibitory action. Conversely, peroxisomal carnitine octanoyltransferase activity was depressed by 0.2-1 mM-chlorpromazine, which also inhibits mitochondrial carnitine palmitoyltransferase activity in all conditions in which these enzyme reactions are assayed. Different patterns of inhibition by the drug were, however, demonstrated for both these enzyme activities. Inhibitory effects of chlorpromazine on mitochondrial cytochrome c oxidase activity were also described. Inhibitions of both cytochrome c oxidase and carnitine palmitoyltransferase are proposed to explain the decreased mitochondrial fatty acid oxidation with 0.4-1.0 mM-chlorpromazine reported by Leighton, Persico & Necochea [(1984) Biochem. Biophys. Res. Commun. 120, 505-511], whereas depression by the drug of carnitine octanoyltransferase activity is presented as the factor responsible for the decreased peroxisomal beta-oxidizing activity described by the above workers.  (+info)

DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism. (53/96)

DL-Aminocarnitine (3-amino-4-trimethylaminobutyric acid) and acetyl-DL-aminocarnitine (3-acetamido-4-trimethylaminobutyric acid) have been synthesized and the interactions of these compounds with carnitine acetyltransferase and carnitine palmitoyltransferase investigated. As anticipated from the low group transfer potential of amides, carnitine acetyltransferase catalyzes the transfer of acetyl groups from CoASAc to aminocarnitine (Km = 3.8 mM) but does not catalyze detectable transfer from acetylaminocarnitine to CoASH. Acetyl-DL-aminocarnitine is, however, a potent competitive inhibitor of carnitine acetyltransferase (Ki = 24 microM) and is bound to carnitine acetyltransferase about 13-fold more tightly than is acetylcarnitine, with which it is isosteric. DL-Aminocarnitine and, to a lesser extent, acetyl-DL-aminocarnitine are also inhibitors of the carnitine palmitoyltransferase activity of detergent-lysed rat liver mitochondria; in the presence of 1 mM L-carnitine, 5 microM aminocarnitine inhibits palmitoyl transfer by 64%. Significant acylation of aminocarnitine by palmitoyl-CoA was not observed. Neither aminocarnitine nor acetylaminocarnitine is significantly catabolized by mice; aminocarnitine is converted to acetylaminocarnitine in vivo. Both compounds are excreted in the urine. Mice given acetylaminocarnitine catabolize [14C]acetyl-L-carnitine and [14C]palmitate to 14CO2 more slowly than do control animals. Mice given acetylaminocarnitine and then starved are found to reversibly accumulate triglycerides in their livers; mice given the inhibitor but not starved do not show this effect.  (+info)

An essential requirement of cardiolipin for mitochondrial carnitine acylcarnitine translocase activity. Lipid requirement of carnitine acylcarnitine translocase. (54/96)

The phospholipid requirement for the optimal solubilization of carnitine acylcarnitine translocase from the inner membrane vesicles of rat liver mitochondria and for its reconstitution in liposomes was investigated. At the octylglucoside-solubilization step, the presence of cardiolipin proved superior to the other lipids tested. For reconstitution, a mixture having phosphatidylcholine, phosphatidylethanolamine and cardiolipin was found to be particularly effective. The requirement of cardiolipin at this step was met less effectively by other anionic phospholipids. Moreover, in intact mitochondria of rat liver and heart, the translocase activity was markedly inhibited by micromolar concentrations of doxorubicin, a specific cardiolipin-binding agent.  (+info)

Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern. (55/96)

Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in brain mitochondrial fractions were approx. 3-4-fold lower than activities in liver. Estimated Km values of CPT1 and CPT2 (the overt and latent forms respectively of carnitine palmitoyltransferase) for L-carnitine were 80 microM and 326 microM, respectively, and K0.5 values for palmitoyl-CoA were 18.5 microM and 12 microM respectively. CPT1 activity was strongly inhibited by malonyl-CoA, with I50 values (concn. giving 50% of maximum inhibition) of approx. 1.5 microM. In the absence of other ligands, [2-14C]malonyl-CoA bound to intact brain mitochondria in a manner consistent with the presence of two independent classes of binding sites. Estimated values for KD(1), KD(2), N1 and N2 were 18 nM, 27 microM, 1.3 pmol/mg of protein and 168 pmol/mg of protein respectively. Neither CPT1 activity, nor its sensitivity towards malonyl-CoA, was affected by 72 h starvation. Rates of oxidation of palmitoyl-CoA (in the presence of L-carnitine) or of palmitoylcarnitine by non-synaptic mitochondria were extremely low, indicating that neither CPT1 nor CPT2 was likely to be rate-limiting for beta-oxidation in brain. CPT1 activity relative to mitochondrial protein increased slightly from birth to weaning (20 days) and thereafter decreased by approx. 50%.  (+info)

High sensitivity of carnitine acyltransferase I to malonyl-CoA inhibition in liver of obese Zucker rats. (56/96)

Carnitine acyltransferase of liver mitochondria prepared from obese Zucker rats has a higher sensitivity to inhibition by malonyl-CoA compared with carnitine acyltransferase of mitochondria prepared from lean Zucker rats.  (+info)