Interactions of viruses in Cowpea: effects on growth and yield parameters. (57/132)

The study was carried out to investigate the effects of inoculating three cowpea cultivars: "OLO II", "OLOYIN" and IT86D-719 with three unrelated viruses: Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture on growth and yield of cultivars at 10 and 30 days after planting (DAP). Generally, the growth and yield of the buffer inoculated control plants were significantly higher than those of the virus inoculated plants. Inoculation of plants at an early age of 10 DAP resulted in more severe effect than inoculations at a later stage of 30 DAP. The average values of plant height and number of leaves produced by plants inoculated 30 DAP were higher than those produced by plants inoculated 10 DAP. Most of the plants inoculated 10 DAP died and did not produce seeds. However, " OLOYIN" cultivar was most tolerant and produced reasonable yields when infected 30 DAP. The effect of single viruses on growth and yield of cultivars showed that CABMV caused more severe effects in IT86D-719, SBMV had the greatest effect on "OLO II" while CMeV induced the greatest effect on "OLOYIN". Yield was greatly reduced in double infections involving CABMV in combination with either CMeV or SBMV in "OLOYIN" and "OLO II", however, there was complete loss in yield of IT86D-719. Triple infection led to complete yield loss in all the three cultivars.  (+info)

Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. (58/132)

In Arabidopsis, resistance to Turnip Crinkle Virus (TCV) depends on the resistance (R) gene, HRT, and the recessive locus rrt. Resistance also depends on salicylic acid (SA), EDS1, and PAD4. Exogenous application of SA confers resistance in RRT-containing plants by increasing HRT transcript levels in a PAD4-dependent manner. Here we report that reduction of oleic acid (18:1) can also induce HRT gene expression and confer resistance to TCV. However, the 18:1-regulated pathway is independent of SA, rrt, EDS1, and PAD4. Reducing the levels of 18:1, via a mutation in the SSI2-encoded stearoyl-acyl carrier protein-desaturase, or by exogenous application of glycerol, increased transcript levels of HRT as well as several other R genes. Second-site mutations in the ACT1-encoded glycerol-3-phosphate acyltransferase or GLY1-encoded glycerol-3-phosphate dehydrogenase restored 18:1 levels in HRT ssi2 plants and reestablished a dependence on rrt. Resistance to TCV and HRT gene expression in HRT act1 plants was inducible by SA but not by glycerol, whereas that in HRT pad4 plants was inducible by glycerol but not by SA. The low 18:1-mediated induction of R gene expression was also dependent on ACT1 but independent of EDS1, PAD4, and RAR1. Intriguingly, TCV inoculation did not activate this 18:1-regulated pathway in HRT plants, but instead resulted in the induction of several genes that encode 18:1-synthesizing isozymes. These results suggest that the 18:1-regulated pathway may be specifically targeted during pathogen infection and that altering 18:1 levels may serve as a unique strategy for promoting disease resistance.  (+info)

EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. (59/132)

BACKGROUND: Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E) controls resistance to Melon necrotic spot virus (MNSV) in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method. RESULTS: A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV) and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV. CONCLUSION: This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles.  (+info)

Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). (60/132)

Cell-to-cell movement of the Melon Necrotic Spot Virus (MNSV) is controlled by two small proteins working in trans, an RNA-binding protein (p7A) and an integral membrane protein (p7B) separated by an amber stop codon. p7B contains a single hydrophobic region. Membrane integration of this region was observed when inserted into model proteins in the presence of microsomal membranes. Furthermore, we explored the topology and targeting mechanisms of full-length p7B. Here we present evidence that p7B integrates in vitro into the ER membrane cotranslationally and with an Nt-cytoplasmic/Ct-luminal orientation. The observed topology was monitored in vivo by fusing GFP to the Ct of p7B, enabling the overexpression in Escherichia coli cultures. Finally, the topology of a putative p14 movement protein was established by replacing the amber stop codon located between p7A and p7B.  (+info)

The structure of melon necrotic spot virus determined at 2.8 A resolution. (61/132)

The structure of melon necrotic spot virus (MNSV) was determined at 2.8 A resolution. Although MNSV is classified into the genus Carmovirus of the family Tombusviridae, the three-dimensional structure of MNSV showed a higher degree of similarity to tomato bushy stunt virus (TBSV), which belongs to the genus Tombusvirus, than to carnation mottle virus (CMtV), turnip crinkle virus (TCV) or cowpea mottle virus (CPMtV) from the genus Carmovirus. Thus, the classification of the family Tombusviridae at the genus level conflicts with the patterns of similarity among coat-protein structures. MNSV is one of the viruses belonging to the genera Tombusvirus or Carmovirus that are naturally transmitted in the soil by zoospores of fungal vectors. The X-ray structure of MNSV provides us with a representative structure of viruses transmitted by fungi.  (+info)

R protein activation: another player revealed. (62/132)

 (+info)

CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. (63/132)

 (+info)

Influence of viral genes on the cell-to-cell spread of RNA silencing. (64/132)

 (+info)