Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. (49/132)

The mechanisms underlying induction and suppression of RNA silencing in the ongoing plant-virus arms race are poorly understood. We show here that virus-derived small RNAs produced by Arabidopsis Dicer-like 4 (DCL4) program an effector complex conferring antiviral immunity. Inhibition of DCL4 by a viral-encoded suppressor revealed the subordinate antiviral activity of DCL2. Accordingly, inactivating both DCL2 and DCL4 was necessary and sufficient to restore systemic infection of a suppressor-deficient virus. The effects of DCL2 were overcome by increasing viral dosage in inoculated leaves, but this could not surmount additional, non-cell autonomous effects of DCL4 specifically preventing viral unloading from the vasculature. These findings define a molecular framework for studying antiviral silencing and defense in plants.  (+info)

A cis-replication element functions in both orientations to enhance replication of Turnip crinkle virus. (50/132)

Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a positive-sense RNA virus containing a 4054-base genome. Previous results indicated that insertion of Hairpin 4 (H4) into a TCV-associated satellite RNA enhanced replication 6-fold in vivo (Nagy, P., Pogany, J., Simon, A. E., 1999. EMBO J. 18:5653-5665). A detailed structural and functional analysis of H4 has now been performed to investigate its role in TCV replication. RNA structural probing of H4 in full-length TCV supported the sequence forming hairpin structures in both orientations in vitro. Deletion and mutational analyses determined that H4 is important for efficient accumulation of TCV in protoplasts, with a 98% reduction of genomic RNA levels when H4 was deleted. In vitro transcription using p88 [the TCV RNA-dependent RNA polymerase] demonstrated that H4 in its plus-sense orientation [H4(+)] caused a nearly 2-fold increase in RNA synthesis from a core hairpin promoter located on TCV plus-strands. H4 in its minus-sense orientation [H4(-)] stimulated RNA synthesis by 100-fold from a linear minus-strand promoter. Gel mobility shift assays indicated that p88 binds H4(+) and H4(-) with equal affinity, which was substantially greater than the binding affinity to the core promoters. These results support roles for H4(+) and H4(-) in TCV replication by enhancing syntheses of both strands through attracting the RdRp to the template.  (+info)

Functional analysis of the five melon necrotic spot virus genome-encoded proteins. (51/132)

Function of the melon necrotic spot virus (MNSV) genome-encoded proteins (p29, p89, p7A, p7B and p42) has been studied. Protein-expression mutants of an infectious, full-length cDNA clone of a Spanish MNSV-Al isolate and a recombinant green fluorescent protein (GFP)-expressing virus were used in infection bioassays on melon plants. Results revealed that p29 and p89 are both essential for virus replication, whereas small proteins p7A and p7B are sufficient to support viral movement between adjacent cells operating in trans. It is also demonstrated that, in addition to its structural role as coat protein, p42 is an important factor controlling symptoms and is required for systemic transport. Moreover, both p42 and p7B, among all of the MNSV-encoded proteins, were able to delay RNA silencing in transient-expression assays on GFP-transgenic Nicotiana benthamiana plants. Finally, the presence of p42 also produced an enhancing effect on local spread similar to that of potyviral helper component proteinase (HC-Pro), probably due to its RNA silencing-suppression ability.  (+info)

Insights into the selective pressures restricting Pelargonium flower break virus genome variability: Evidence for host adaptation. (52/132)

The molecular diversity of Pelargonium flower break virus (PFBV) was assessed using a collection of isolates from different geographical origins, hosts, and collecting times. The genomic region examined was 1,828 nucleotides (nt) long and comprised the coding sequences for the movement (p7 and p12) and the coat (CP) proteins, as well as flanking segments including the entire 3' untranslated region (3' UTR). Some constraints limiting viral heterogeneity could be inferred from sequence analyses, such as the conservation of the amino acid sequences of p7 and of the shell domain of the CP, the maintenance of a leucine zipper motif in p12, and the preservation of a particular folding in the 3' UTR. A remarkable covariation, involving five specific amino acid sites, was found in the CP of isolates largely propagated in the local lesion host Chenopodium quinoa and in the progeny of a PFBV variant subjected to serial passages in this host. Concomitant with this covariation, up to 30 nucleotide substitutions in a 1,428-nt region of the viral RNA could be attributable to C. quinoa-specific adaptation, representing one of the most outstanding cases of host-driven genome variation for a plant virus. Globally, the results indicate that the selective pressures exerted by the host play a critical role in shaping PFBV populations and that these populations are likely being selected for at both protein and RNA levels.  (+info)

In vitro-reassembled plant virus-like particles for loading of polyacids. (53/132)

The coat protein (CP) of certain plant viruses may reassemble into empty virus-like particles (VLPs) and these protein cages may serve as potential drug delivery platforms. In this paper, the production of novel VLPs from the Hibiscus chlorotic ringspot virus (HCRSV) is reported and the capacity to load foreign materials was characterized. VLPs were readily produced by destabilizing the HCRSV in 8 M urea or Tris buffer pH 8, in the absence of calcium ions, followed by removal of viral RNA by ultrahigh-speed centrifugation and the reassembly of the CP in sodium acetate buffer pH 5. The loading of foreign materials into the VLPs was dependent on electrostatic interactions. Anionic polyacids, such as polystyrenesulfonic acid and polyacrylic acid, were successfully loaded but neutrally charged dextran molecules were not. The molecular-mass threshold for the polyacid cargo was about 13 kDa, due to the poor retention of smaller molecules, which readily diffused through the holes between the S domains present on the surface of the VLPs. These holes precluded the entry of large molecules, but allowed smaller molecules to enter or exit. The polyacid-loaded VLPs had comparable size, morphology and surface-charge density to the native HCRSV, and the amount of polyacids loaded was comparable to the weight of the native genomic materials. The conditions applied to disassembly-reassembly of the virions did not change the structural conformation of the CP. HCRSV-derived VLPs may provide a promising nano-sized protein cage for delivery of anionic drug molecules.  (+info)

Hibiscus chlorotic ringspot virus p27 and its isoforms affect symptom expression and potentiate virus movement in kenaf (Hibiscus cannabinus L.). (54/132)

Hibiscus chlorotic ringspot virus (HCRSV), a member of the genus Carmovirus, encodes p27 (27-kDa protein) and two other in-frame isoforms (p25 and p22.5) that are coterminal at the carboxyl end. Only p27, which initiates at the 2570CUG codon, was detected in transfected kenaf (Hibiscus cannabinus L.) protoplasts through fusion to a Flag tag at either its N or C terminus. Subcellular localization of a p27-green fluorescent fusion protein in kenaf epidermal cells showed that it was localized to membrane structures close to cell walls. To study the functions of these proteins, a number of start codon mutants and premature translation termination mutants were constructed. Phenotypic differences were observed between the wild-type virus and these mutants during infection. Infectivity assays on plants indicated that p27 is a determinant of symptom severity. Without p25, appearance of symptoms on systemically infected kenaf leaves was delayed by 4 to 8 days. In a timecourse analysis, Western blot assays revealed that the delay corresponded to retardation in virus systemic movement, which suggested that p25 is probably involved in virus systemic movement. Mutations disrupting expression of p22.5 did not affect symptoms or virus movement.  (+info)

RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. (55/132)

Advances in structural and biochemical properties of carmovirus movement proteins (MPs) have only been obtained in p7 and p9 from Carnation mottle virus (CarMV). Alignment of carmovirus MPs revealed a low conservation of amino acid identity but interestingly, similarity was elevated in regions associated with the functional secondary structure elements reported for CarMV which were conserved in all studied proteins. Nevertheless, some differential features in relation with CarMV MPs were identified in those from Melon necrotic virus (MNSV) (p7A and p7B). p7A was a soluble non-sequence specific RNA-binding protein, but unlike CarMV p7, its central region alone could not account for the RNA-binding properties of the entire protein. In fact, a 22-amino acid synthetic peptide whose sequence corresponds to this central region rendered an apparent dissociation constant (K(d)) significantly higher than that of the corresponding entire protein (9 mM vs. 0.83-25.7 microM). This p7A-derived peptide could be induced to fold into an alpha-helical structure as demonstrated for other carmovirus p7-like proteins. Additionally, in vitro fractionation of p7B transcription/translation mixtures in the presence of ER-derived microsomal membranes strongly suggested that p7B is an integral membrane protein. Both characteristics of these two small MPs forming the double gene block (DGB) of MNSV are discussed in the context of the intra- and intercellular movement of carmovirus.  (+info)

Host-dependent effects of the 3' untranslated region of turnip crinkle virus RNA on accumulation in Hibiscus and Arabidopsis. (56/132)

The 3' untranslated region (UTR) of turnip crinkle virus (TCV) RNA is 253 nt long (nt 3798-4050) with a 27 nt hairpin structure near its 3' terminus. In this study, the roles of the 3' UTR in virus accumulation were investigated in protoplasts of Hibiscus cannabinus L. and Arabidopsis thaliana (L.) Heynh. Our results showed that, in Hibiscus protoplasts, the minimal 3' UTR essential for TCV accumulation extends from nt 3922 to 4050, but that maintenance of virus accumulation at wild-type (wt) levels requires the full-length 3' UTR. However, in Arabidopsis protoplasts, only 33 nt (nt 4018-4050) at the 3' extremity of the UTR is required for wt levels of accumulation, whereas other parts of the 3' UTR are dispensable. The 27 nt hairpin within the 33 nt region is essential for virus accumulation in both Hibiscus and Arabidopsis protoplasts. However, transposition of nucleotides in base pairs within the upper or lower stems has no effect on virus accumulation in either Hibiscus or Arabidopsis protoplasts, and alterations of the loop sequence also fail to affect replication. Disruption of the upper or lower stems and deletion of the loop sequence reduce viral accumulation in Arabidopsis protoplasts, but abolish virus accumulation in Hibiscus protoplasts completely. These results indicate that strict conservation of the hairpin structure is more important for replication in Hibiscus than in Arabidopsis protoplasts. In conclusion, both the 3' UTR primary sequence and the 3'-terminal hairpin structure influence TCV accumulation in a host-dependent manner.  (+info)