Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. (25/3277)

This study was designed to determine whether mechanical stretch activates the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in cardiomyocytes and, if so, by what mechanism. Neonatal rat/murine cardiomyocytes were cultured on malleable silicone dishes and were stretched by 20%. Mechanical stretch induced rapid phosphorylation of JAK1, JAK2, Tyk2, STAT1, STAT3, and glycoprotein 130 as early as 2 minutes and peaked at 5 to 15 minutes. It also caused gel mobility shift of sis-inducing element, which was supershifted by preincubation with anti-STAT3 antibody. Preincubation with CV11974 (AT1 blocker) partially inhibited the phosphorylation of STAT1, but not that of STAT3. Preincubation with TAK044 (endothelin-1-type A/B-receptor blocker) did not attenuate this pathway. RX435 (anti-glycoprotein 130 blocking antibody) inhibited the phosphorylation of STAT3 and partially inhibited that of STAT1. Phosphorylation of STAT1 and STAT3 was strongly inhibited by HOE642 (Na+/H+ exchanger inhibitor) and BAPTA-AM (intracellular calcium chelator), but not by gadolinium (stretch-activated ion channel inhibitor), EGTA (extracellular Ca2+ chelator), or KN62 (Ca2+/calmodulin kinase II inhibitor). Chelerythrine (protein kinase C inhibitor) partially inhibited the phosphorylation of STAT1 and STAT3. Mechanical stretch also augmented the mRNA expression of cardiotrophin-1, interleukin-6, and leukemia inhibitory factor at 60 to 120 minutes. These results indicated that the JAK/STAT pathway was activated by mechanical stretch, and that this activation was partially dependent on autocrine/paracrine-secreted angiotensin II and was mainly dependent on the interleukin-6 family of cytokines but was independent of endothelin-1. Moreover, certain levels of intracellular Ca2+ were necessary for stretch-induced activation of this pathway, and protein kinase C was also partially involved in this activation.  (+info)

Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. (26/3277)

Stimulation of cardiac beta1-adrenergic receptors is the main mechanism that increases heart rate and contractility. Consequently, several pharmacological and gene transfer strategies for the prevention of heart failure aim at improving the function of the cardiac beta-adrenergic receptor system, whereas current clinical treatment favors a reduction of cardiac stimulation. To address this controversy, we have generated mice with heart-specific overexpression of beta1-adrenergic receptors. Their cardiac function was investigated in organ bath experiments as well as in vivo by cardiac catheterization and by time-resolved NMR imaging. The transgenic mice had increased cardiac contractility at a young age but also developed marked myocyte hypertrophy (3.5-fold increase in myocyte area). This increase was followed by progressive heart failure with functional and histological deficits typical for humans with heart failure. Contractility was reduced by approximately 50% in 35-week-old mice, and ejection fraction was reduced down to a minimum of approximately 20%. We conclude that overexpression of beta1-adrenergic receptors in the heart may lead to a short-lived improvement of cardiac function, but that increased beta1-adrenergic receptor signalling is ultimately detrimental.  (+info)

Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. (27/3277)

We showed before that in cardiac myocytes partial inhibition of Na+/K+-ATPase by nontoxic concentrations of ouabain causes hypertrophy and transcriptional regulations of growth-related marker genes through multiple Ca2+-dependent signal pathways many of which involve Ras and p42/44 mitogen-activated protein kinases. The aim of this work was to explore the roles of intracellular reactive oxygen species (ROS) in these ouabain-initiated pathways. Ouabain caused a rapid generation of ROS within the myocytes that was prevented by preexposure of cells to N-acetylcysteine (NAC) or vitamin E. These antioxidants also blocked or attenuated the following actions of ouabain: inductions of the genes of skeletal alpha-actin and atrial natriuretic factor, repression of the gene of the alpha3-subunit of Na+/K+-ATPase, activation of mitogen-activated protein kinases, activation of Ras-dependent protein synthesis, and activation of transcription factor NF-kappaB. Induction of c-fos and activation of AP-1 by ouabain were not sensitive to NAC. Ouabain-induced inhibition of active Rb+ uptake through Na+/K+-ATPase and the resulting rise in intracellular Ca2+ were also not prevented by NAC. A phorbol ester that also causes myocyte hypertrophy did not increase ROS generation, and its effects on marker genes and protein synthesis were not affected by NAC. We conclude the following: (a) ROS are essential second messengers within some but not all signal pathways that are activated by the effect of ouabain on Na+/K+-ATPase; (b) the ROS-dependent pathways are involved in ouabain-induced hypertrophy; (c) increased ROS generation is not a common response of the myocyte to all hypertrophic stimuli; and (d) it may be possible to dissociate the positive inotropic effect of ouabain from its growth-related effects by alteration of the redox state of the cardiac myocyte.  (+info)

Aortic connexin43 is decreased during hypertension induced by inhibition of nitric oxide synthase. (28/3277)

Connexin43 (Cx43), the predominant gap junction protein in vessels and heart, is involved in the control of cell-to-cell communication and is thought to modulate the contractility of the vascular wall and the electrical coupling of cardiac myocytes. We have investigated the effects of arterial hypertension induced by inhibition of nitric oxide synthase on the expression of Cx43 in aorta and heart as well as on the distensibility of the carotid artery. Administration of 0.4 g/L NG-nitro-L-arginine methyl ester (L-NAME) to rats in their drinking water for 4 weeks increased intra-arterial mean blood pressure, wall thickness of aorta and carotid artery (25%), and heart weight (17%). Analysis of heart mRNA demonstrated increased expression of the fetal skeletal alpha-actin and of atrial natriuretic peptide but not of Cx43. In contrast, Cx43 mRNA and protein were decreased by 50% in the aortas of L-NAME-treated rats that did not show increased carotid distensibility. Because these data contrasted with those obtained in the 2-kidney, 1 clip model of rat hypertension, which is characterized by increased arterial distensibility and Cx43 expression in aorta, we investigated by Western blot analysis the posttranslational modifications of Cx43. We found that Cx43 was more phosphorylated in the aorta of 2-kidney, 1 clip rats than in that of L-NAME or control rats, which indicated a differential regulation of Cx43 in different models of hypertension. The data suggest that the cell-to-cell communication mediated by Cx43 channels may help regulate the elasticity of the vascular wall.  (+info)

Cardiac growth factors in human hypertrophy. Relations with myocardial contractility and wall stress. (29/3277)

The aim of the present study was to investigate whether and which cardiac growth factors are involved in human hypertrophy, whether growth factor synthesis is influenced by overload type and/or by the adequacy of the hypertrophy, and the relationships between cardiac growth factor formation and ventricular function. Cardiac growth factor formation was assessed by measuring aorta-coronary sinus concentration gradient in patients with isolated aortic stenosis (n=26) or regurgitation (n=15) and controls (n=12). Gene expression and cellular localization was investigated in ventricular biopsies using reverse transcriptase-polymerase chain reaction and in situ hybridization. Cardiac hypertrophy with end-systolic wall stress <90 kdyne/cm2 was associated with a selective increased formation of insulin-like growth factor (IGF)-I in aortic regurgitation and of IGF-I and endothelin (ET)-1 in aortic stenosis. mRNA levels for IGF-I and preproET-1 were elevated and mainly expressed in cardiomyocytes. At stepwise analysis, IGF-I formation was correlated to the mean velocity of circumferential fiber shortening (r=0.86, P<0.001) and ET-1 formation to relative wall thickness (r=0.82, P<0. 001). When end-systolic wall stress was >90 kdyne/cm2, IGF-I and ET-1 synthesis by cardiomyocytes was no longer detectable, and only angiotensin (Ang) II was generated, regardless of the type of overload. The mRNA level for angiotensinogen was high, and the mRNA was exclusively expressed in the interstitial cells. Ang II formation was positively correlated to end-systolic stress (r=0.89, P<0.001) and end-diastolic stress (r=0.84, P<0.001). Multivariate stepwise analysis selected end-systolic stress as the most predictive variable and left ventricular end-diastolic pressure as the independent variable for Ang II formation (r=0.93, P<0.001). In conclusion, the present results indicate that the course of human left ventricular hypertrophy is characterized by the participation of different cardiac growth factors that are selectively related both to the type of hemodynamic overload and to ventricular function.  (+info)

Cardiac specific overexpression of transglutaminase II (G(h)) results in a unique hypertrophy phenotype independent of phospholipase C activation. (30/3277)

Tissue type transglutaminase (TGII, also known as G(h)) has been considered a multifunctional protein, with both transglutaminase and GTPase activity. The role of the latter function, which is proposed as a coupling mechanism between alpha(1)-adrenergic receptors and phospholipase C (PLC), is not well defined. TGII was overexpressed in transgenic mice in a cardiac specific manner to delineated relevant signaling pathways and their consequences in the heart. Cardiac transglutaminase activity in the highest expressing line was approximately 37-fold greater than in nontransgenic lines. However, in vivo signaling to PLC, as assessed by inositol phosphate turnover in [(3)H]myoinositol organ bath atrial preparations, was not increased in the TGII mice at base line or in response to alpha(1)-adrenergic receptor stimulation; nor was protein kinase Calpha (PKCalpha) or PKCepsilon activity enhanced in the TGII transgenic mice. This is in contrast to mice moderately (approximately 5-fold) overexpressing G(alphaq), where inositol phosphate turnover and PKC activity were found to be clearly enhanced. TGII overexpression resulted in a remodeling of the heart with mild hypertrophy, elevated expression of beta-myosin heavy chain and alpha-skeletal actin genes, and diffuse interstitial fibrosis. Resting ventricular function was depressed, but responsiveness to beta-agonist was not impaired. This set of pathophysiologic findings is distinct from that evoked by overexpression of G(alphaq). We conclude that TGII acts in the heart primarily as a transglutaminase, and modulation of this function results in unique pathologic sequelae. Evidence for TGII acting as a G-protein-like transducer of receptor signaling to PLC in the heart is not supported by these studies.  (+info)

Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. (31/3277)

Oxidative stress has been implicated in the pathophysiology of myocardial failure. We tested the hypothesis that inhibition of endogenous antioxidant enzymes can regulate the phenotype of cardiac myocytes. Neonatal rat ventricular myocytes in vitro were exposed to diethyldithiocarbamic acid (DDC), an inhibitor of cytosolic (Cu, Zn) and extracellular superoxide dismutase (SOD). DDC inhibited SOD activity and increased intracellular superoxide in a concentration-dependent manner. A low concentration (1 micromol/L) of DDC stimulated myocyte growth, as demonstrated by increases in protein synthesis, cellular protein, prepro-atrial natriuretic peptide, and c-fos mRNAs and decreased sarcoplasmic reticulum Ca(2+)ATPase mRNA. These actions were all inhibited by the superoxide scavenger Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid). Higher concentrations of DDC (100 micromol/L) stimulated myocyte apoptosis, as evidenced by DNA laddering, characteristic nuclear morphology, in situ terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL), and increased bax mRNA expression. DDC-stimulated apoptosis was inhibited by the SOD/catalase mimetic EUK-8. The growth and apoptotic effects of DDC were mimicked by superoxide generation with xanthine plus xanthine oxidase. Thus, increased intracellular superoxide resulting from inhibition of SOD causes activation of a growth program and apoptosis in cardiac myocytes. These findings support a role for oxidative stress in the pathogenesis of myocardial remodeling and failure.  (+info)

Cardiac changes in fetuses secondary to immune hemolytic anemia and their relation to hemoglobin and catecholamine concentrations in fetal blood. (32/3277)

OBJECTIVES: Immune hemolytic anemia in the fetus may cause cardiac decompensation and intrauterine death. Postnatally, norepinephrine (noradrenaline) is released in chronic heart failure, and may lead to myocardial hypertrophy. The aim of this study was to determine fetal cardiac changes associated with immune hemolytic anemia by means of echocardiography, and to relate them to fetal hemoglobin and norepinephrine levels. DESIGN: Thirty anemic fetuses underwent a total of 76 umbilical venous transfusions. Before the procedure, fetal echocardiography was performed, and end-diastolic myocardial wall thicknesses and ventricular dimensions together with Doppler flow patterns at the atrioventricular and semilunar valves were measured. Fetal hemoglobin, epinephrine and norepinephrine concentrations were determined before the transfusion. Statistical analysis of this prospective study comprised descriptive statistics including linear regression and correlation analyses. Two samples of measurements were compared by the Mann-Whitney U test. RESULTS: The mean hemoglobin concentration before the first transfusion was 6.9 g% at a mean gestational age of 26.8 weeks. Norepinephrine values were elevated in comparison to a reference range, and were higher than epinephrine values. The most striking echocardiographic finding was myocardial hypertrophy of all ventricular walls. Mean blood flow velocities were increased; at the left ventricle, they were negatively related to the hemoglobin concentrations, and positively to the norepinephrine values. CONCLUSIONS: Fetal myocardial hypertrophy in anemia may be the result of an augmented cardiac workload, indicated by the increased left ventricular mean velocities. This reaction reflects the redistribution of blood flow that may depend on hemoglobin and norepinephrine concentrations.  (+info)