Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. (73/275)

The mechanisms by which autoantibodies against cardiac myosin (CM) may lead to heart dysfunction is unknown. We show that autoantibodies to CM in anti-CM sera and mAbs derived from experimental autoimmune myocarditis targeted the heart cell surface and induced Ab-mediated cAMP-dependent protein kinase A activity. Ab-mediated cell signaling of protein kinase A was blocked by CM, anti-IgG, or by specific inhibitors of the beta-adrenergic receptor (beta-AR) pathway. mAbs confirmed mimicry between CM and the beta-AR. Passive transfer of purified Ab (IgG) from CM-immunized rats resulted in IgG deposition and apoptosis in the heart, leading to a cardiomyopathic heart disease phenotype in recipients. Our novel findings link anti-CM Ab with the beta-AR and subsequent Ab-mediated cell signaling in the heart.  (+info)

Emerging therapies for the management of decompensated heart failure: from bench to bedside. (74/275)

While pharmaceutical innovation has been highly successful in reducing mortality in chronic heart failure, this has not been matched by similar success in decompensated heart failure syndromes. Despite outstanding issues over definitions and end points, we argue in this paper that an unprecedented wealth of pharmacologic innovation may soon transform the management of these challenging patients. Agents that target contractility, such as cardiac myosin activators and novel adenosine triphosphate-dependent transmembrane sodium-potassium pump inhibitors, provide inotropic support without arrhythmogenic increases in cytosolic calcium or side effects of more traditional agents. Adenosine receptor blockade may improve glomerular filtration and diuresis by exerting a direct beneficial effect on glomerular blood flow while vasopressin antagonists promote free water excretion without compromising renal function and may simultaneously inhibit myocardial remodeling. Urodilatin, the renally synthesized isoform of atrial natriuretic peptide, may improve pulmonary congestion via vasodilation and enhanced diuresis. Finally, metabolic modulators such as perhexiline may optimize myocardial energy utilization by shifting adenosine triphosphate production from free fatty acids to glucose, a unique and conceptually appealing approach to the management of heart failure. These advances allow optimism not only for the advancement of our understanding and management of decompensated heart failure syndromes but for the translational research effort in heart failure biology in general.  (+info)

Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. (75/275)

Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal-amoeboid-like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.  (+info)

Molecular pathway for the localized formation of the sinoatrial node. (76/275)

The sinoatrial node, which resides at the junction of the right atrium and the superior caval vein, contains specialized myocardial cells that initiate the heart beat. Despite this fundamental role in heart function, the embryonic origin and mechanisms of localized formation of the sinoatrial node have not been defined. Here we show that subsequent to the formation of the Nkx2-5-positive heart tube, cells bordering the inflow tract of the heart tube give rise to the Nkx2-5-negative myocardial cells of the sinoatrial node and the sinus horns. Using genetic models, we show that as the myocardium of the heart tube matures, Nkx2-5 suppresses pacemaker channel gene Hcn4 and T-box transcription factor gene Tbx3, thereby enforcing a progressive confinement of their expression to the forming Nkx2-5-negative sinoatrial node and sinus horns. Thus, Nkx2-5 is essential for establishing a gene expression border between the atrium and sinoatrial node. Tbx3 was found to suppress chamber differentiation, providing an additional mechanism by which the Tbx3-positive sinoatrial node is shielded from differentiating into atrial myocardium. Pitx2c-deficient fetuses form sinoatrial nodes with indistinguishable molecular signatures at both the right and left sinuatrial junction, indicating that Pitx2c functions within the left/right pathway to suppress a default program for sinuatrial node formation on the left. Our molecular pathway provides a mechanism for how pacemaker activity becomes progressively relegated to the most recently added components of the venous pole of the heart and, ultimately, to the junction of the right atrium and superior caval vein.  (+info)

Proplatelet formation is regulated by the Rho/ROCK pathway. (77/275)

Platelets are released by megakaryocytes (MKs) via cytoplasmic extensions called proplatelets, which require profound changes in the microtubule and actin organization. Here, we provide evidence that the Rho/ROCK pathway, a well-known regulator of actin cytoskeleton, acts as a negative regulator of proplatelet formation (PPF). Rho is expressed at a high level during the entire MK differentiation including human CD34(+) cells. Thrombopoietin stimulates its activity but at a higher extent in immature than in mature MKs. Overexpression of a dominant-negative or a spontaneously active RhoA leads to an increase or a decrease in PPF indicating that Rho activation inhibits PPF. This inhibitory effect is mediated through the main Rho effector, Rho kinase (ROCK), the inhibition of which also increases PPF. Furthermore, inhibition of Rho or ROCK in MKs leads to a decrease in myosin light chain 2 (MLC2) phosphorylation, which is required for myosin contractility. Interestingly, inhibition of the MLC kinase also decreases MLC2 phosphorylation while increasing PPF. Taken together, our results suggest that MLC2 phosphorylation is regulated by both ROCK and MLC kinase and plays an important role in platelet biogenesis by controlling PPF and fragmentation.  (+info)

Control of stress-dependent cardiac growth and gene expression by a microRNA. (78/275)

The heart responds to diverse forms of stress by hypertrophic growth accompanied by fibrosis and eventual diminution of contractility, which results from down-regulation of alpha-myosin heavy chain (alphaMHC) and up-regulation of betaMHC, the primary contractile proteins of the heart. We found that a cardiac-specific microRNA (miR-208) encoded by an intron of the alphaMHC gene is required for cardiomyocyte hypertrophy, fibrosis, and expression of betaMHC in response to stress and hypothyroidism. Thus, the alphaMHC gene, in addition to encoding a major cardiac contractile protein, regulates cardiac growth and gene expression in response to stress and hormonal signaling through miR-208.  (+info)

A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation. (79/275)

Molecular motors housed in myosins of the thick filament react with thin-filament actins and promote force and shortening in the sarcomeres. However, other actions of these motors sustain sarcomeric activation by cooperative feedback mechanisms in which the actin-myosin interaction promotes thin-filament activation. Mechanical feedback also affects the actin-myosin interaction. We discuss current concepts of how these relatively under-appreciated actions of molecular motors are responsible for modulation of the ejection time and isovolumic relaxation in the beating heart.  (+info)

Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system. (80/275)

Recent advances in the study of cardiac development have shown the relevance of addition of myocardium to the primary myocardial heart tube. In wild-type mouse embryos (E9.5-15.5), we have studied the myocardium at the venous pole of the heart using immunohistochemistry and 3D reconstructions of expression patterns of MLC-2a, Nkx2.5, and podoplanin, a novel coelomic and myocardial marker. Podoplanin-positive coelomic epithelium was continuous with adjacent podoplanin- and MLC-2a-positive myocardium that formed a conspicuous band along the left cardinal vein extending through the base of the atrial septum to the posterior myocardium of the atrioventricular canal, the atrioventricular nodal region, and the His-Purkinje system. Later on, podoplanin expression was also found in the myocardium surrounding the pulmonary vein. On the right side, podoplanin-positive cells were seen along the right cardinal vein, which during development persisted in the sinoatrial node and part of the venous valves. In the MLC-2a- and podoplanin-positive myocardium, Nkx2.5 expression was absent in the sinoatrial node and the wall of the cardinal veins. There was a mosaic positivity in the wall of the common pulmonary vein and the atrioventricular conduction system as opposed to the overall Nkx2.5 expression seen in the chamber myocardium. We conclude that we have found podoplanin as a marker that links a novel Nkx2.5-negative sinus venosus myocardial area, which we refer to as the posterior heart field, with the cardiac conduction system.  (+info)