Treatment of autoimmune anterior uveitis with recombinant TCR ligands. (65/275)

PURPOSE: To determine protective properties of recombinant TCR ligands (RTLs) as a new treatment for experimental autoimmune anterior uveitis (AU). RTLs comprise the rat RT1.B beta1alpha1 domains, linked either to the guinea pig MBP69-89 peptide (RTL201), to the corresponding rat MBP69-89 peptide (RTL200), or to the cardiac myosin peptide CM-2 (RTL203). METHODS: AU associated with experimental autoimmune encephalomyelitis (EAE) was actively induced in Lewis rats by injection of myelin basic protein emulsified in complete Freund's adjuvant (CFA) or passively by the transfer of pathogenic T cells. Rats received five daily doses each of 300 microg RTL201 in saline, intravenously. Control rats received the same dose of RTL203 or an "empty" beta1alpha1 protein (no peptide). The rats were evaluated for the suppression of clinical and histologic signs of AU. RESULTS: RTL201 prevented active and passive AU and reduced the clinical symptoms of established AU. RTL201 completely prevented clinical and histologic AU in the treated rats, compared with disease progression in the untreated rats or those treated with an "empty" construct. The suppression of clinical AU correlated with a significant reduction in inflammatory cells infiltrating the eyes of the RTL201-treated rats. Furthermore, RTL201 inhibited T cell proliferation, DTH responses, and cytokine mRNA expression in the eye, in contrast to the untreated rats. In comparison with RTL201, RTL200 was less effective in protecting the eye from AU. RTL203 also significantly inhibited clinical AU, but not EAE. CONCLUSIONS: RTL constructs suppressed clinical and histologic AU by inhibiting the systemic activation of specific T cells and preventing the recruitment of inflammatory cells into the eye. These findings suggest a possible clinical application of this novel class of peptide/MHC class II constructs in patients with AU that is mediated by T-cell responses to known antigenic peptides.  (+info)

Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. (66/275)

Although it is well known that mutations in the cardiac regulatory myosin light chain-2 (mlc-2) gene cause hypertrophic cardiomyopathy, the precise in vivo structural and functional roles of MLC-2 in the heart are only poorly understood. We have isolated a mutation in zebrafish, tell tale heart (tel(m225)), which selectively perturbs contractility of the embryonic heart. By positional cloning, we identified tel to encode the zebrafish mlc-2 gene. In contrast to mammals, zebrafish have only 1 cardiac-specific mlc-2 gene, which we find to be expressed in atrial and ventricular cardiomyocytes during early embryonic development, but also in the adult heart. Accordingly, loss of zMLC-2 function cannot be compensated for by upregulation of another mlc-2 gene. Surprisingly, ultrastructural analysis of tel cardiomyocytes reveals complete absence of organized thick myofilaments. Thus, our findings provide the first in vivo evidence that cardiac MLC-2 is required for thick-filament stabilization and contractility in the vertebrate heart.  (+info)

Semaphorin3D regulates invasion of cardiac neural crest cells into the primary heart field. (67/275)

The primary heart field in all vertebrates is thought to be derived exclusively from lateral plate mesoderm (LPM), which gives rise to a cardiac tube shortly after gastrulation. The heart tube then begins looping and additional cells are added from other embryonic regions, including the secondary heart field, cardiac neural crest and the proepicardial organ. Here we show in zebrafish that neural crest cells invade and contribute cardiac myosin light chain2 (cmlc2)-positive cardiomyocytes to the primary heart field. Knockdown of semaphorin3D, which is expressed in the neural crest but apparently not in LPM, reduces the size of the primary heart field and the number of cardiomyocytes in the primary heart field by 20% before formation of the primary heart tube. Sema3D morphants have subsequent complex congenital heart defects, including hypertrophic cardiomyocytes, decreased ventricular size and defects in trabeculation and in atrioventricular (AV) valve development. Neuropilin1A, a semaphorin receptor, is expressed in LPM but apparently not in the neural crest, and nrp1A morphants have cardiac development defects. We propose that a population of sema3D-dependent neural crest cells follow a novel migratory pathway, perhaps toward nrp1A-expressing LPM, and serve as an important early source of cardiomyocytes in the primary heart field.  (+info)

Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. (68/275)

Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.  (+info)

Improved cardiac function in infarcted mice after treatment with pluripotent embryonic stem cells. (69/275)

Because pluripotent embryonic stem cells (ESCs) are able to differentiate into any tissue, they are attractive agents for tissue regeneration. Although improvement of cardiac function has been observed after transplantation of pluripotent ESCs, the extent to which these effects reflect ESC-mediated remuscularization, revascularization, or paracrine mechanisms is unknown. Moreover, because ESCs may generate teratomas, the ability to predict the outcome of cellular differentiation, especially when transplanting pluripotent ESCs, is essential; conversely, a requirement to use predifferentiated ESCs would limit their application to highly characterized subsets that are available in limited numbers. In the experiments reported here, we transplanted low numbers of two murine ESC lines, respectively engineered to express a beta-galactosidase gene from either a constitutive (elongation factor) or a cardiac-specific (alpha-myosin heavy chain) promoter, into infarcted mouse myocardium. Although ESC-derived tumors formed within the pericardial space in 21% of injected hearts, lacZ histochemistry revealed that engraftment of ESC was restricted to the ischemic myocardium. Echocardiographic monitoring of ESC-injected hearts that did not form tumors revealed functional improvements by 4 weeks postinfarction, including significant increases in ejection fraction, circumferential fiber shortening velocity, and peak mitral blood flow velocity. These experiments indicate that the infarcted myocardial environment can support engraftment and cardiomyogenic differentiation of pluripotent ESCs, concomitant with partial functional recovery.  (+info)

Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform. (70/275)

Myosin heavy chain (MHC) isoforms in vertebrate striated muscles are distinguished functionally by differences in chemomechanical kinetics. These kinetic differences may influence the cross-bridge-dependent co-operativity of thin filament Ca(2+) activation. To determine whether Ca(2+) sensitivity of unloaded thin filament sliding depends upon MHC isoform kinetics, we performed in vitro motility assays with rabbit skeletal heavy meromyosin (rsHMM) or porcine cardiac myosin (pcMyosin). Regulated thin filaments were reconstituted with recombinant human cardiac troponin (rhcTn) and alpha-tropomyosin (rhcTm) expressed in Escherichia coli. All three subunits of rhcTn were coexpressed as a functional complex using a novel construct with a glutathione S-transferase (GST) affinity tag at the N-terminus of human cardiac troponin T (hcTnT) and an intervening tobacco etch virus (TEV) protease site that allows purification of rhcTn without denaturation, and removal of the GST tag without proteolysis of rhcTn subunits. Use of this highly purified rhcTn in our motility studies resulted in a clear definition of the regulated motility profile for both fast and slow MHC isoforms. Maximum sliding speed (pCa 5) of regulated thin filaments was roughly fivefold faster with rsHMM compared with pcMyosin, although speed was increased by 1.6- to 1.9-fold for regulated over unregulated actin with both MHC isoforms. The Ca(2+) sensitivity of regulated thin filament sliding speed was unaffected by MHC isoform. Our motility results suggest that the cellular changes in isoform expression that result in regulation of myosin kinetics can occur independently of changes that influence thin filament Ca(2+) sensitivity.  (+info)

Endosomes generate localized Rho-ROCK-MLC2-based contractile signals via Endo180 to promote adhesion disassembly. (71/275)

The regulated assembly and disassembly of focal adhesions and adherens junctions contributes to cell motility and tumor invasion. Pivotal in this process is phosphorylation of myosin light chain-2 (MLC2) by Rho kinase (ROCK) downstream of Rho activation, which generates the contractile force necessary to drive disassembly of epithelial cell-cell junctions and cell-matrix adhesions at the rear of migrating cells. How Rho-ROCK-MLC2 activation occurs at these distinct cellular locations is not known, but the emerging concept that endocytic dynamics can coordinate key intracellular signaling events provides vital clues. We report that endosomes containing the promigratory receptor Endo180 (CD280) can generate Rho-ROCK-MLC2-based contractile signals. Moreover, we provide evidence for a cellular mechanism in which Endo180-containing endosomes are spatially localized to facilitate their contractile signals directly at sites of adhesion turnover. We propose migration driven by Endo180 as a model for the spatial regulation of contractility and adhesion dynamics by endosomes.  (+info)

Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. (72/275)

The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1-null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1-null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1-null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antagonistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion.  (+info)