CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. (41/240)

Angiotensin II (Ang II) is a peptide hormone that, like many cytokines, acts as a proinflammatory agent and growth factor. After injury to the liver, the hormone assists in tissue repair by stimulating hepatocytes and hepatic stellate cells to synthesize extracellular matrix proteins and secrete secondary cytokines and by stimulating myofibroblasts to proliferate. However, under conditions of chronic liver injury, all of these effects conspire to promote pathologic liver fibrosis. Much of this effect of Ang II results from activation of the proinflammatory NF-kappaB transcription factor in response to stimulation of the type 1 Ang II receptor, a G protein-coupled receptor. Here, we characterize a previously undescribed signaling pathway mediating Ang II-dependent activation of NF-kappaB, which is composed of three principal proteins, CARMA3, Bcl10, and MALT1. Blocking the function of any of these proteins, through the use of either dominant-negative mutants, RNAi, or gene targeting, effectively abolishes Ang II-dependent NF-kappaB activation in hepatocytes. In addition, Bcl10(-/-) mice show defective hepatic cytokine production after Ang II treatment. Evidence also is presented that this pathway activates NF-kappaB through ubiquitination of IKKgamma, the regulatory subunit of the IkappaB kinase complex. These results elucidate a concrete series of molecular events that link ligand activation of the type 1 Ang II receptor to stimulation of the NF-kappaB transcription factor. These findings also uncover a function of the CARMA, Bcl10, and MALT1 proteins in cells outside the immune system.  (+info)

The CARMA1-Bcl10 signaling complex selectively regulates JNK2 kinase in the T cell receptor-signaling pathway. (42/240)

Members of the c-Jun NH(2)-terminal kinase (JNK) family play crucial roles in cell activation, differentiation, and apoptosis. Although many studies have indicated that JNK1 and JNK2 have functional differences and redundancy, the upstream signaling pathway that selectively activates JNK1 or JNK2 remains unknown. In this study, we have revealed a selective mechanism of JNK activation, in which JNK2, but not JNK1, was regulated by CARMA1, a scaffold molecule, after stimulation of the T cell receptor (TCR). This CARMA1-dependent regulation of JNK2 worked through the scaffold molecule Bcl10, which was inducibly associated with JNK2 and served as a JNK-interacting protein (JIP)-like scaffold to assemble the kinases JNK2, MKK7, and TAK1. Finally, we showed that CARMA1- and Bcl10-mediated JNK2 activation had a critical role in regulating the amount of c-Jun protein. Together, our studies provide genetic evidence that JNK1 and JNK2 are differentially regulated in the TCR-signaling pathway and play different functions.  (+info)

The death domain superfamily in intracellular signaling of apoptosis and inflammation. (43/240)

The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily, and the pyrin domain (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfamily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this chapter, we review the molecular complexes assembled by these proteins, the structural and biochemical features of these domains, and the molecular interactions mediated by them. By analyzing the potential molecular basis for the function of these domains, we hope to provide a comprehensive understanding of the function, structure, interaction, and evolution of this important family of domains.  (+info)

Negative feedback loop in T cell activation through IkappaB kinase-induced phosphorylation and degradation of Bcl10. (44/240)

Activation of the transcription factor NF-kappaB after stimulation through antigen receptors is important for lymphocyte differentiation, activation, proliferation, and protection against apoptosis. Much progress has been made in understanding the molecular events leading to NF-kappaB activation, but how this activation is eventually down-regulated is less well understood. Recent studies have indicated that Bcl10 functions downstream of lymphocyte antigen receptors to promote the activation of the IkappaB kinase complex leading to the phosphorylation and degradation of the IkappaB inhibitors of NF-kappaB. Bcl10 has also been implicated in the pathogenesis of mucosa-associated lymphoid tissue lymphoma, possibly in association with its nuclear localization. Here, we provide evidence that the IkappaB kinase complex phosphorylates Bcl10 after T cell antigen receptor stimulation and causes its proteolysis via the beta-TrCP ubiquitin ligase/proteasome pathway. These findings document a negative regulatory activity of the IKK complex and suggest that Bcl10 degradation is part of the regulatory mechanisms that precisely control the response to antigens. Mutants of Bcl10 in the IKK phosphorylation site are resistant to degradation, accumulate in the nucleus, and lead to an increase in IL-2 production after T cell antigen receptor stimulation.  (+info)

Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. (45/240)

CD26 is a widely distributed 110-kDa cell surface glycoprotein with an important role in T-cell costimulation. We demonstrated previously that CD26 binds to caveolin-1 in antigen-presenting cells, and following exogenous CD26 stimulation, Tollip and IRAK-1 disengage from caveolin-1 in antigen-presenting cells. IRAK-1 is then subsequently phosphorylated to up-regulate CD86 expression, resulting in subsequent T-cell proliferation. However, it is unclear whether caveolin-1 is a costimulatory ligand for CD26 in T-cells. Using soluble caveolin-1-Fc fusion protein, we now show that caveolin-1 is the costimulatory ligand for CD26, and that ligation of CD26 by caveolin-1 induces T-cell proliferation and NF-kappaB activation in a T-cell receptor/CD3-dependent manner. We also demonstrated that the cytoplasmic tail of CD26 interacts with CARMA1 in T-cells, resulting in signaling events that lead to NF-kappaB activation. Ligation of CD26 by caveolin-1 recruits a complex consisting of CD26, CARMA1, Bcl10, and IkappaB kinase to lipid rafts. Taken together, our findings provide novel insights into the regulation of T-cell costimulation via the CD26 molecule.  (+info)

Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. (46/240)

The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.  (+info)

CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor-induced NF-kappaB activation. (47/240)

T lymphocyte (T cell) activation and proliferation is induced by the activation of multiple signal transduction pathways. Earlier studies indicate that CARMA1, a Caspase Recruitment Domain (CARD) and Membrane-associated GUanylate Kinase domain (MAGUK)-containing scaffold protein, plays an essential role in NF-kappaB activation induced by the costimulation of T cell receptor (TCR) and CD28 molecules. However, the molecular mechanism by which CARMA1 mediates TCR-CD28 costimulation-induced NF-kappaB activation is not fully understood. Here we show that CARMA1 is constitutively oligomerized. This oligomerization of CARMA1 is through its Coiled-coil domain. Disruption of the predicted structure of the Coiled-coil domain of CARMA1 impaired its oligomerization and, importantly, abrogated CARMA1-mediated NF-kappaB activation. Interestingly, disruption of the CC1 domain abrogates CARMA1 localization, whereas disruption of the CC2 domain seems to inhibit CARMA1 self-association. Together, our results demonstrate that the oligomerization of CARMA1 is required for TCR-induced NF-kappaB activation.  (+info)

CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-{kappa}B activation. (48/240)

G protein-coupled receptors (GPCRs) play pivotal roles in regulating various cellular functions. Although many GPCRs induce NF-kappaB activation, the molecular mechanism of GPCR-induced NF-kappaB activation remains largely unknown. CARMA3 (CARD and MAGUK domain-containing protein 3) is a scaffold molecule with unknown biological functions. By generating CARMA3 knockout mice using the gene targeting approach, here we show CARMA3 is required for GPCR-induced NF-kappaB activation. Mechanistically, we found that CARMA3 deficiency impairs GPCR-induced IkappaB kinase (IKK) activation, although it does not affect GPCR-induced IKKalpha/beta phosphorylation, indicating that inducible phosphorylation of IKKalpha/beta alone is not sufficient to induce its kinase activity. We also found that CARMA3 is physically associated with NEMO/IKKgamma, and induces polyubiquitination of an unknown protein(s) that associates with NEMO, likely by linking NEMO to TRAF6. Consistently, we found TRAF6 deficiency also abrogates GPCR-induced NF-kappaB activation. Together, our results provide the genetic evidence that CARMA3 is required for GPCR-induced NF-kappaB activation.  (+info)