Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-alpha in the liver. (41/11254)

Identification of specific and primary chromosomal alterations during the course of neoplastic development is an essential part of defining the genetic basis of cancer. We have developed a transgenic mouse model for liver neoplasia in which chromosomal lesions associated with both the initial stages of the neoplastic process and the acquisition of malignancy can be analyzed. Here we analyze chromosomal alterations in 11 hepatocellular carcinomas from the c-myc/TGF-alpha double-transgenic mice by fluorescent in situ hybridization with whole chromosome probes, single-copy genes, and 4'-6-diamidino-2-phenylindole (DAPI-) and G-banded chromosomes and report nonrandom cytogenetic alterations associated with the tumor development. All tumors were aneuploid and exhibited nonrandom structural and numerical alterations. A balanced translocation t(5:6)(G1;F2) was identified by two-color fluorescent in situ hybridization in all tumors, and, using a genomic probe, the c-myc transgene was localized near the breakpoint on derivative chromosome der 6. Partial or complete loss of chromosome 4 was observed in all tumors with nonrandom breakage in band C2. Deletions of chromosome 1 were observed in 80% of the tumors, with the most frequent deletion at the border of bands C4 and C5. An entire copy of chromosome 7 was lost in 80% of the tumors cells. Eighty-five percent of the tumor cells had lost one copy of chromosome 12, and the most common breakpoint on chromosome 12 occurred at band D3 (28%). A copy of chromosome 14 was lost in 72%, and band 14E1 was deleted in 32% of the tumor cells. The X chromosome was lost in the majority of the tumor cells. The most frequent deletion on the X chromosome involved band F1. We have previously shown that breakages of chromosomes 1, 6, 7, and 12 were observed before the appearance of morphologically distinct neoplastic liver lesions in this transgenic mouse model. Thus breakpoints on chromosome 4, 9, 14, and X appear to be later events in this model of liver neoplasia. This is the first study to demonstrate that specific sites of chromosomal breakage observed during a period of chromosomal instability in early stages of carcinogenesis are later involved in stable rearrangements in solid tumors. The identification of the 5;6 translocation in all of the tumors has a special significance, being the first balanced translocation reported in human and mouse hepatocellular carcinoma and having the breakpoint near a tumor susceptibility gene and myc transgene site of integration. Moreover, its early occurrence indicates that this is a primary and relevant alteration to the initiation of the neoplastic process. In addition, the concordance between the breakpoints observed during the early dysplastic stage of hepatocarcinogenesis and the stable deletions of chromosomes 1, 4, 6, 7, 9, and 12 in the tumors provides evidence for preferential site of genetic changes in hepatocarcinogenesis.  (+info)

Cirrhosis of the liver in long-term marrow transplant survivors. (42/11254)

Patients who survive hematopoietic cell transplantation (HCT) have multiple risk factors for chronic liver disease, including hepatitis virus infection, iron overload, and chronic graft-versus-host disease (GVHD). We studied 3,721 patients who had survived 1 or more years after HCT at a single center and identified patients with histologic or clinical evidence of cirrhosis. Risk factors for the development of cirrhosis were evaluated and compared with a group of matched control subjects. Cirrhosis was identified in 31 of 3,721 patients surviving 1 or more years after HCT, 23 of 1,850 patients surviving 5 or more years, and in 19 of 860 patients surviving 10 or more years. Cumulative incidence after 10 years was estimated to be 0.6% and after 20 years was 3.8%. The median time from HCT to the diagnosis of cirrhosis was 10.1 years (range, 1.2 to 24.9 years). Twenty-three patients presented with complications of portal hypertension, and 1 presented with hepatocellular carcinoma. Thirteen patients have died from complications of liver disease, and 2 died of other causes. Three patients have undergone orthotopic liver transplantation. Hepatitis C virus infection was present in 25 of 31 (81%) of patients with cirrhosis and in 14 of 31 (45%) of controls (P =.01). Cirrhosis was attibutable to hepatitis C infection in 15 of 16 patients presenting more than 10 years after HCT. There was no difference in the prevalence of acute or chronic GVHD, duration of posttransplant immunosuppression, or posttransplant marrow iron stores between cases and controls. Cirrhosis is an important late complication of hematopoietic cell transplantation and in most cases is due to chronic hepatitis C. Long-term survivors should be evaluated for the presence of abnormal liver function and hepatitis virus infection.  (+info)

Two common functional polymorphisms in the promoter region of the coagulation factor VII gene determining plasma factor VII activity and mass concentration. (43/11254)

Recent studies have provided evidence for associations between common polymorphic markers in the coagulation factor VII (FVII) gene and plasma FVII levels. Here we describe two common, nonrelated, functional polymorphisms in the promoter region of the FVII gene, a G to T substitution at position -401 and a novel G to A substitution at position -402. Both polymorphisms strongly influence the binding properties of nuclear protein(s). The rare -401T allele is associated with a reduced basal rate of transcription of the FVII gene in human hepatoblastoma cells and with reduced plasma concentrations of total FVII (VIIag) and fully activated FVII molecules (VIIa). In contrast, the rare -402A allele confers increased transcriptional activity and is associated with increased plasma FVII levels. Together, the two polymorphisms explained 18% and 28% of the variation in VIIag and VIIa, respectively, in a group of 183 healthy, middle-aged men. It is concluded that these polymorphisms are important for the regulation of the plasma levels of FVII and that they are likely to be useful genetic markers to resolve the issue of whether a causal relationship exists between FVII levels and risk of coronary heart disease.  (+info)

Mad-overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells. (44/11254)

Mad protein has been shown as an antagonist of c-Myc protein in some cell lines. The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally. An eukarryotic vector pCDNA III containing full ORF fragment of mad cDNA was transfected into targeted cells. Under G418 selection, stable Mad-overexpressed cells were cloned. Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells. DNA synthesis, cell proliferation and anchorage-independent growth in soft-agar of the mad-transfected cells were partially inhibited in comparison to control cells. Flow Cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase, resulting in the retardation of cell proliferation. RT-PCR detected a marked inhibition of the expression of cdc25A, an important regulator gene of G0/G1 to S phase in cell cycle. It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-7404-M1 cells in the absence of serume. Thus, Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.  (+info)

Clinical course and risk factors of hepatitis C virus related liver disease in the general population: report from the Dionysos study. (45/11254)

BACKGROUND: The severity, clinical course, and risk of hepatitis C virus (HCV) related chronic liver disease are still rather poorly defined. AIMS: To investigate the prevalence, risk factors, and severity of HCV related liver disease in the general population, and investigate whether infection with a specific genotype is associated with an increased risk of cirrhosis or hepatocellular carcinoma. METHODS: HCV RNA determination by polymerase chain reaction (PCR) and HCV genotyping were performed in all anti-HCV positive subjects belonging to the Dionysos study (6917 subjects). Diagnosis of cirrhosis and hepatocellular carcinoma was established by liver biopsy in all cases. All the data were analysed by univariate and multivariate statistics in all the cohort. To investigate the natural history of HCV infection, anti-HCV positive subjects were followed up every six months for three years with liver function tests and ultrasonograms. RESULTS: The overall prevalence of HCV RNA positivity was 2.3%. Positivity increased progressively with age, and was higher in women (ratio of men to women = 0.7). Genotypes 1b and 2a were the most frequent (42 and 24% of HCV RNA positive patients), with a prevalence of 1 and 0.6% respectively. Intravenous drug use, blood transfusions received before 1990, history of previous hepatitis among the cohabiting, and history of animal (mainly dogs) bites were significantly (p<0.05) associated with HCV infection, independently of age and sex. Multivariate analysis showed that, independently of age, sex, and alcohol intake, genotype 1b infection, with or without coinfection with other genotypes, is the major risk factor associated with the presence of cirrhosis and/or hepatocellular carcinoma. During the three years of follow up, 57 (35%) of the HCV RNA positive subjects had consistently normal alanine aminotransferase and gamma-glutamyltransferase values. Two of the 22 HCV RNA positive cirrhotic patients, all drinking more than 90 g of alcohol a day, developed hepatocellular carcinoma (incidence rate = 3.0% per year). CONCLUSIONS: In the general population of Northern Italy, HCV infection is widespread, but only less than 50% of the anti-HCV positive subjects, particularly those infected with genotype 1b, are associated with a more severe liver disease. Alcohol consumption greater that 30 g a day significantly aggravates the natural course of the disease.  (+info)

Actions of HSVtk and connexin43 gene delivery on gap junctional communication and drug sensitization in hepatocellular carcinoma. (46/11254)

We have previously demonstrated that transfected hepatocellular carcinoma cells (Hepa1-6) with one copy (pAGO) and two copies (pYED) of the HSVtk gene, using liposomes, induced cell death of untransfected cells in the presence of ganciclovir (GCV). This phenomenon is called the 'bystander effect'. To determine whether an elevated level of connexin43 increases the bystander effect, we have cotransfected Hepa1-6 cells with a plasmid containing the HSVtk gene driven by the alpha-fetoprotein promoter (pFTK) or pAGO or pYED and connexin43. The results showed that, after GCV treatment, the percentage of growth inhibition was higher (25-30%) in cells cotransfected with HSVtk and connexin43 than in cells transfected only with HSVtk gene. The IC50 of GCV on cells transfected with pFTK/Connexin43 was 17.85-fold lower than cells transfected with pFTK alone. To improve these results, stable connexin43 transduced Hepa1-6 cells were transfected with pFTK followed by GCV treatment. In this case, the cell growth was markedly inhibited as compared with parental cells. Furthermore, we have studied the correlation between the expression of the HSVtk and the connexin43 proteins. Using flow cytometric analysis, scrape loading/dye transfer and immunoblotting assay we found that the cells transfected separately by pAGO, pYED, pFTK and pLTR-Cx43 showed an increase of connexin43 protein. This study indicates that transfecting Hepa1-6 cells with both connexin43 and HSVtk genes up-regulates connexin43 expression which enhances the bystander effect and subsequently tumor cell death.  (+info)

Activation of the N-myc2 oncogene by woodchuck hepatitis virus integration in the linked downstream b3n locus in woodchuck hepatocellular carcinoma. (47/11254)

In the woodchuck hepatitis virus (WHV)/woodchuck model for hepatitis B virus-induced hepatocellular carcinoma, frequent activation of N-myc oncogenes by WHV integration has been firmly established. N-myc2, the most frequently affected gene, was reported to be activated by WHV insertion either in the proximity of the gene or in a distant uncoding locus, win. We previously reported that a WHV integration cloned from a liver tumor was located in a chromosomal locus already described by others as the site of WHV integration in another hepatocellular carcinoma. On this basis, the locus, named b3n, was defined as a recurrent site of WHV integration. A scaffold or matrix attachment region (S/MAR) element was subsequently shown to be located in this locus approximately 1 kb from the WHV insertion sites. S/MARs are genetic elements involved both in structural and functional organization of chromosomal DNA and in stimulation of gene expression. In the present work, we investigated the possibility that an N-myc gene might be affected by integration in b3n. Analysis of a liver tumor harboring WHV integration in this locus showed N-myc2 overexpression. By restriction analysis, the b3n locus was shown to be located downstream of N-myc2, so the known sites of viral insertion in b3n were approximately 11 kb downstream of the N-myc2 promoter. Although these data support that WHV insertion in b3n activates N-myc2, the mechanisms previously described to be involved in N-myc2 activation do not appear to properly account for activation in this subset of WHV integrations. Available data suggest that activation of N-myc2 by WHV integration in b3n might be mediated by the S/MAR located near the WHV insertion.  (+info)

HIP/PAP gene, encoding a C-type lectin overexpressed in primary liver cancer, is expressed in nervous system as well as in intestine and pancreas of the postimplantation mouse embryo. (48/11254)

We originally isolated the HIP/PAP gene in a differential screen of a human hepatocellular carcinoma cDNA library. This gene is expressed at high levels in 25% of primary liver cancers but not in nontumorous liver. HIP/PAP belongs to the family of C-type lectins and acts as an adhesion molecule for hepatocytes. In normal adult human tissues, HIP/PAP expression is found in pancreas (exocrine and endocrine cells) and small intestine (Paneth and neuroendocrine cells). In order to gain insight into the possible role of HIP/PAP in vivo, we have investigated the pattern of HIP/PAP expression in the developing postimplantation mouse embryo by in situ hybridization. Detailed analysis of developing mouse embryos revealed that HIP/PAP gene exhibits a restricted expression pattern during development. Thus, HIP/PAP transcripts are first observed within the nervous system from day 14.5 onwards in trigeminal ganglia, dorsal root ganglia, and spinal cord where it appears to be an early specific marker of a subpopulation of motor neurons. At laster stages, HIP/PAP transcripts were detected in intestine and pancreas at day 16.5 but not in embryonic liver. This highly restricted expression pattern suggests that HIP/PAP might participate in neuronal as well as intestinal and pancreatic cell development.  (+info)